ref: 88181e1c5c8d19e61c76b93620abcbc7c2e57481
dir: /sys/src/cmd/audio/mp3enc/util.c/
/* * lame utility library source file * * Copyright (c) 1999 Albert L Faber * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* $Id: util.c,v 1.67 2001/03/20 00:42:56 markt Exp $ */ #ifdef HAVE_CONFIG_H # include <config.h> #endif #define PRECOMPUTE #include "util.h" #include <ctype.h> #include <assert.h> #include <stdarg.h> #if defined(__FreeBSD__) && !defined(__alpha__) # include <machine/floatingpoint.h> #endif #ifdef WITH_DMALLOC #include <dmalloc.h> #endif /*********************************************************************** * * Global Function Definitions * ***********************************************************************/ /*empty and close mallocs in gfc */ void freegfc ( lame_internal_flags* const gfc ) /* bit stream structure */ { int i; #ifdef KLEMM_44 if (gfc->resample_in != NULL) { resample_close(gfc->resample_in); gfc->resample_in = NULL; } free(gfc->mfbuf[0]); free(gfc->mfbuf[1]); #endif for ( i = 0 ; i <= 2*BPC; i++ ) if ( gfc->blackfilt[i] != NULL ) { free ( gfc->blackfilt[i] ); gfc->blackfilt[i] = NULL; } if ( gfc->inbuf_old[0] ) { free ( gfc->inbuf_old[0] ); gfc->inbuf_old[0] = NULL; } if ( gfc->inbuf_old[1] ) { free ( gfc->inbuf_old[1] ); gfc->inbuf_old[1] = NULL; } if ( gfc->bs.buf != NULL ) { free ( gfc->bs.buf ); gfc->bs.buf = NULL; } if ( gfc->VBR_seek_table.bag ) { free ( gfc->VBR_seek_table.bag ); } if ( gfc->ATH ) { free ( gfc->ATH ); } free ( gfc ); } FLOAT8 ATHformula_old(FLOAT8 f) { FLOAT8 ath; f /= 1000; // convert to khz f = Max(0.01, f); f = Min(18.0, f); /* from Painter & Spanias, 1997 */ /* minimum: (i=77) 3.3kHz = -5db */ ath = 3.640 * pow(f,-0.8) - 6.500 * exp(-0.6*pow(f-3.3,2.0)) + 0.001 * pow(f,4.0); return ath; } FLOAT8 ATHformula_GB(FLOAT8 f) { FLOAT8 ath; f /= 1000; // convert to khz f = Max(0.01, f); f = Min(18.0, f); /* from Painter & Spanias, 1997 */ /* modified by Gabriel Bouvigne to better fit to the reality */ ath = 3.640 * pow(f,-0.8) - 6.800 * exp(-0.6*pow(f-3.4,2.0)) + 6.000 * exp(-0.15*pow(f-8.7,2.0)) + 0.6* 0.001 * pow(f,4.0); return ath; } FLOAT8 ATHformula_GBtweak(FLOAT8 f) { FLOAT8 ath; f /= 1000; // convert to khz f = Max(0.01, f); f = Min(18.0, f); /* from Painter & Spanias, 1997 */ /* modified by Gabriel Bouvigne to better fit to the reality */ ath = 3.640 * pow(f,-0.8) - 6.800 * exp(-0.6*pow(f-3.4,2.0)) + 6.000 * exp(-0.15*pow(f-8.7,2.0)) + 0.57* 0.001 * pow(f,4.0) //0.57 to maximize HF importance + 6; //std --athlower -6 for return ath; } /* * Klemm 1994 and 1997. Experimental data. Sorry, data looks a little bit * dodderly. Data below 30 Hz is extrapolated from other material, above 18 * kHz the ATH is limited due to the original purpose (too much noise at * ATH is not good even if it's theoretically inaudible). */ FLOAT8 ATHformula_Frank( FLOAT8 freq ) { /* * one value per 100 cent = 1 * semitone = 1/4 * third = 1/12 * octave = 1/40 decade * rest is linear interpolated, values are currently in decibel rel. 20 �Pa */ static FLOAT tab [] = { /* 10.0 */ 96.69, 96.69, 96.26, 95.12, /* 12.6 */ 93.53, 91.13, 88.82, 86.76, /* 15.8 */ 84.69, 82.43, 79.97, 77.48, /* 20.0 */ 74.92, 72.39, 70.00, 67.62, /* 25.1 */ 65.29, 63.02, 60.84, 59.00, /* 31.6 */ 57.17, 55.34, 53.51, 51.67, /* 39.8 */ 50.04, 48.12, 46.38, 44.66, /* 50.1 */ 43.10, 41.73, 40.50, 39.22, /* 63.1 */ 37.23, 35.77, 34.51, 32.81, /* 79.4 */ 31.32, 30.36, 29.02, 27.60, /* 100.0 */ 26.58, 25.91, 24.41, 23.01, /* 125.9 */ 22.12, 21.25, 20.18, 19.00, /* 158.5 */ 17.70, 16.82, 15.94, 15.12, /* 199.5 */ 14.30, 13.41, 12.60, 11.98, /* 251.2 */ 11.36, 10.57, 9.98, 9.43, /* 316.2 */ 8.87, 8.46, 7.44, 7.12, /* 398.1 */ 6.93, 6.68, 6.37, 6.06, /* 501.2 */ 5.80, 5.55, 5.29, 5.02, /* 631.0 */ 4.75, 4.48, 4.22, 3.98, /* 794.3 */ 3.75, 3.51, 3.27, 3.22, /* 1000.0 */ 3.12, 3.01, 2.91, 2.68, /* 1258.9 */ 2.46, 2.15, 1.82, 1.46, /* 1584.9 */ 1.07, 0.61, 0.13, -0.35, /* 1995.3 */ -0.96, -1.56, -1.79, -2.35, /* 2511.9 */ -2.95, -3.50, -4.01, -4.21, /* 3162.3 */ -4.46, -4.99, -5.32, -5.35, /* 3981.1 */ -5.13, -4.76, -4.31, -3.13, /* 5011.9 */ -1.79, 0.08, 2.03, 4.03, /* 6309.6 */ 5.80, 7.36, 8.81, 10.22, /* 7943.3 */ 11.54, 12.51, 13.48, 14.21, /* 10000.0 */ 14.79, 13.99, 12.85, 11.93, /* 12589.3 */ 12.87, 15.19, 19.14, 23.69, /* 15848.9 */ 33.52, 48.65, 59.42, 61.77, /* 19952.6 */ 63.85, 66.04, 68.33, 70.09, /* 25118.9 */ 70.66, 71.27, 71.91, 72.60, }; FLOAT8 freq_log; unsigned index; if ( freq < 10. ) freq = 10.; if ( freq > 29853. ) freq = 29853.; freq_log = 40. * log10 (0.1 * freq); /* 4 steps per third, starting at 10 Hz */ index = (unsigned) freq_log; assert ( index < sizeof(tab)/sizeof(*tab) ); return tab [index] * (1 + index - freq_log) + tab [index+1] * (freq_log - index); } FLOAT8 ATHformula(FLOAT8 f,lame_global_flags *gfp) { switch(gfp->ATHtype) { case 0: return ATHformula_old(f); case 1: return ATHformula_Frank(f); case 2: return ATHformula_GB(f); case 3: return ATHformula_GBtweak(f); } return ATHformula_Frank(f); } /* see for example "Zwicker: Psychoakustik, 1982; ISBN 3-540-11401-7 */ FLOAT8 freq2bark(FLOAT8 freq) { /* input: freq in hz output: barks */ if (freq<0) freq=0; freq = freq * 0.001; return 13.0*atan(.76*freq) + 3.5*atan(freq*freq/(7.5*7.5)); } /* see for example "Zwicker: Psychoakustik, 1982; ISBN 3-540-11401-7 */ FLOAT8 freq2cbw(FLOAT8 freq) { /* input: freq in hz output: critical band width */ freq = freq * 0.001; return 25+75*pow(1+1.4*(freq*freq),0.69); } /*********************************************************************** * compute bitsperframe and mean_bits for a layer III frame **********************************************************************/ void getframebits(lame_global_flags *gfp, int *bitsPerFrame, int *mean_bits) { lame_internal_flags *gfc=gfp->internal_flags; int whole_SpF; /* integral number of Slots per Frame without padding */ int bit_rate; /* get bitrate in kbps [?] */ if (gfc->bitrate_index) bit_rate = bitrate_table[gfp->version][gfc->bitrate_index]; else bit_rate = gfp->brate; assert ( bit_rate <= 550 ); // bytes_per_frame = bitrate * 1000 / ( gfp->out_samplerate / (gfp->version == 1 ? 1152 : 576 )) / 8; // bytes_per_frame = bitrate * 1000 / gfp->out_samplerate * (gfp->version == 1 ? 1152 : 576 ) / 8; // bytes_per_frame = bitrate * ( gfp->version == 1 ? 1152/8*1000 : 576/8*1000 ) / gfp->out_samplerate; whole_SpF = (gfp->version+1)*72000*bit_rate / gfp->out_samplerate; // There must be somewhere code toggling gfc->padding on and off /* main encoding routine toggles padding on and off */ /* one Layer3 Slot consists of 8 bits */ *bitsPerFrame = 8 * (whole_SpF + gfc->padding); // sideinfo_len *mean_bits = (*bitsPerFrame - 8*gfc->sideinfo_len) / gfc->mode_gr; } #define ABS(A) (((A)>0) ? (A) : -(A)) int FindNearestBitrate( int bRate, /* legal rates from 32 to 448 */ int version, /* MPEG-1 or MPEG-2 LSF */ int samplerate) /* convert bitrate in kbps to index */ { int bitrate = 0; int i; for ( i = 1; i <= 14; i++ ) if ( ABS (bitrate_table[version][i] - bRate) < ABS (bitrate - bRate) ) bitrate = bitrate_table [version] [i]; return bitrate; } /* map frequency to a valid MP3 sample frequency * * Robert.Hegemann@gmx.de 2000-07-01 */ int map2MP3Frequency(int freq) { if (freq <= 8000) return 8000; if (freq <= 11025) return 11025; if (freq <= 12000) return 12000; if (freq <= 16000) return 16000; if (freq <= 22050) return 22050; if (freq <= 24000) return 24000; if (freq <= 32000) return 32000; if (freq <= 44100) return 44100; return 48000; } int BitrateIndex( int bRate, /* legal rates from 32 to 448 kbps */ int version, /* MPEG-1 or MPEG-2/2.5 LSF */ int samplerate) /* convert bitrate in kbps to index */ { int i; for ( i = 0; i <= 14; i++) if ( bitrate_table [version] [i] == bRate ) return i; return -1; } /* convert samp freq in Hz to index */ int SmpFrqIndex ( int sample_freq, int* const version ) { switch ( sample_freq ) { case 44100: *version = 1; return 0; case 48000: *version = 1; return 1; case 32000: *version = 1; return 2; case 22050: *version = 0; return 0; case 24000: *version = 0; return 1; case 16000: *version = 0; return 2; case 11025: *version = 0; return 0; case 12000: *version = 0; return 1; case 8000: *version = 0; return 2; default: *version = 0; return -1; } } /***************************************************************************** * * End of bit_stream.c package * *****************************************************************************/ /* reorder the three short blocks By Takehiro TOMINAGA */ /* Within each scalefactor band, data is given for successive time windows, beginning with window 0 and ending with window 2. Within each window, the quantized values are then arranged in order of increasing frequency... */ void freorder(int scalefac_band[],FLOAT8 ix_orig[576]) { int i,sfb, window, j=0; FLOAT8 ix[576]; for (sfb = 0; sfb < SBMAX_s; sfb++) { int start = scalefac_band[sfb]; int end = scalefac_band[sfb + 1]; for (window = 0; window < 3; window++) { for (i = start; i < end; ++i) { ix[j++] = ix_orig[3*i+window]; } } } memcpy(ix_orig,ix,576*sizeof(FLOAT8)); } #ifndef KLEMM_44 /* resampling via FIR filter, blackman window */ inline static FLOAT8 blackman(FLOAT8 x,FLOAT8 fcn,int l) { /* This algorithm from: SIGNAL PROCESSING ALGORITHMS IN FORTRAN AND C S.D. Stearns and R.A. David, Prentice-Hall, 1992 */ FLOAT8 bkwn,x2; FLOAT8 wcn = (PI * fcn); x /= l; if (x<0) x=0; if (x>1) x=1; x2 = x - .5; bkwn = 0.42 - 0.5*cos(2*x*PI) + 0.08*cos(4*x*PI); if (fabs(x2)<1e-9) return wcn/PI; else return ( bkwn*sin(l*wcn*x2) / (PI*l*x2) ); } /* gcd - greatest common divisor */ /* Joint work of Euclid and M. Hendry */ int gcd ( int i, int j ) { // assert ( i > 0 && j > 0 ); return j ? gcd(j, i % j) : i; } /* copy in new samples from in_buffer into mfbuf, with resampling & scaling if necessary. n_in = number of samples from the input buffer that were used. n_out = number of samples copied into mfbuf */ void fill_buffer(lame_global_flags *gfp, sample_t *mfbuf[2], sample_t *in_buffer[2], int nsamples, int *n_in, int *n_out) { lame_internal_flags *gfc = gfp->internal_flags; int ch,i; /* copy in new samples into mfbuf, with resampling if necessary */ if (gfc->resample_ratio != 1.0) { for (ch = 0; ch < gfc->channels_out; ch++) { *n_out = fill_buffer_resample(gfp, &mfbuf[ch][gfc->mf_size], gfp->framesize, in_buffer[ch], nsamples, n_in, ch); } } else { *n_out = Min(gfp->framesize, nsamples); *n_in = *n_out; for (i = 0; i < *n_out; ++i) { mfbuf[0][gfc->mf_size + i] = in_buffer[0][i]; if (gfc->channels_out == 2) mfbuf[1][gfc->mf_size + i] = in_buffer[1][i]; } } /* user selected scaling of the samples */ if (gfp->scale != 0) { for (i=0 ; i<*n_out; ++i) { mfbuf[0][gfc->mf_size+i] *= gfp->scale; if (gfc->channels_out == 2) mfbuf[1][gfc->mf_size + i] *= gfp->scale; } } } int fill_buffer_resample( lame_global_flags *gfp, sample_t *outbuf, int desired_len, sample_t *inbuf, int len, int *num_used, int ch) { lame_internal_flags *gfc=gfp->internal_flags; int BLACKSIZE; FLOAT8 offset,xvalue; int i,j=0,k; int filter_l; FLOAT8 fcn,intratio; FLOAT *inbuf_old; int bpc; /* number of convolution functions to pre-compute */ bpc = gfp->out_samplerate/gcd(gfp->out_samplerate,gfp->in_samplerate); if (bpc>BPC) bpc = BPC; intratio=( fabs(gfc->resample_ratio - floor(.5+gfc->resample_ratio)) < .0001 ); fcn = 1.00/gfc->resample_ratio; if (fcn>1.00) fcn=1.00; filter_l = gfp->quality < 7 ? 31 : 7; filter_l = 31; if (0==filter_l % 2 ) --filter_l;/* must be odd */ filter_l += intratio; /* unless resample_ratio=int, it must be even */ BLACKSIZE = filter_l+1; /* size of data needed for FIR */ if ( gfc->fill_buffer_resample_init == 0 ) { gfc->inbuf_old[0]=calloc(BLACKSIZE,sizeof(gfc->inbuf_old[0][0])); gfc->inbuf_old[1]=calloc(BLACKSIZE,sizeof(gfc->inbuf_old[0][0])); for (i=0; i<=2*bpc; ++i) gfc->blackfilt[i]=calloc(BLACKSIZE,sizeof(gfc->blackfilt[0][0])); gfc->itime[0]=0; gfc->itime[1]=0; /* precompute blackman filter coefficients */ for ( j = 0; j <= 2*bpc; j++ ) { FLOAT8 sum = 0.; offset = (j-bpc) / (2.*bpc); for ( i = 0; i <= filter_l; i++ ) sum += gfc->blackfilt[j][i] = blackman(i-offset,fcn,filter_l); for ( i = 0; i <= filter_l; i++ ) gfc->blackfilt[j][i] /= sum; } gfc->fill_buffer_resample_init = 1; } inbuf_old=gfc->inbuf_old[ch]; /* time of j'th element in inbuf = itime + j/ifreq; */ /* time of k'th element in outbuf = j/ofreq */ for (k=0;k<desired_len;k++) { FLOAT time0; int joff; time0 = k*gfc->resample_ratio; /* time of k'th output sample */ j = floor( time0 -gfc->itime[ch] ); /* check if we need more input data */ if ((filter_l + j - filter_l/2) >= len) break; /* blackman filter. by default, window centered at j+.5(filter_l%2) */ /* but we want a window centered at time0. */ offset = ( time0 -gfc->itime[ch] - (j + .5*(filter_l%2))); assert(fabs(offset)<=.500001); /* find the closest precomputed window for this offset: */ joff = floor((offset*2*bpc) + bpc +.5); xvalue = 0.; for (i=0 ; i<=filter_l ; ++i) { int j2 = i+j-filter_l/2; int y; assert(j2<len); assert(j2+BLACKSIZE >= 0); y = (j2<0) ? inbuf_old[BLACKSIZE+j2] : inbuf[j2]; #define PRECOMPUTE #ifdef PRECOMPUTE xvalue += y*gfc->blackfilt[joff][i]; #else xvalue += y*blackman(i-offset,fcn,filter_l); /* very slow! */ #endif } outbuf[k]=xvalue; } /* k = number of samples added to outbuf */ /* last k sample used data from [j-filter_l/2,j+filter_l-filter_l/2] */ /* how many samples of input data were used: */ *num_used = Min(len,filter_l+j-filter_l/2); /* adjust our input time counter. Incriment by the number of samples used, * then normalize so that next output sample is at time 0, next * input buffer is at time itime[ch] */ gfc->itime[ch] += *num_used - k*gfc->resample_ratio; /* save the last BLACKSIZE samples into the inbuf_old buffer */ if (*num_used >= BLACKSIZE) { for (i=0;i<BLACKSIZE;i++) inbuf_old[i]=inbuf[*num_used + i -BLACKSIZE]; }else{ /* shift in *num_used samples into inbuf_old */ int n_shift = BLACKSIZE-*num_used; /* number of samples to shift */ /* shift n_shift samples by *num_used, to make room for the * num_used new samples */ for (i=0; i<n_shift; ++i ) inbuf_old[i] = inbuf_old[i+ *num_used]; /* shift in the *num_used samples */ for (j=0; i<BLACKSIZE; ++i, ++j ) inbuf_old[i] = inbuf[j]; assert(j==*num_used); } return k; /* return the number samples created at the new samplerate */ } #endif /* ndef KLEMM_44 */ /*********************************************************************** * * Message Output * ***********************************************************************/ void lame_debugf (const lame_internal_flags *gfc, const char* format, ... ) { va_list args; va_start ( args, format ); if ( gfc->report.debugf != NULL ) { gfc->report.debugf( format, args ); } else { (void) vfprintf ( stderr, format, args ); fflush ( stderr ); /* an debug function should flush immediately */ } va_end ( args ); } void lame_msgf (const lame_internal_flags *gfc, const char* format, ... ) { va_list args; va_start ( args, format ); if ( gfc->report.msgf != NULL ) { gfc->report.msgf( format, args ); } else { (void) vfprintf ( stderr, format, args ); fflush ( stderr ); /* we print to stderr, so me may want to flush */ } va_end ( args ); } void lame_errorf (const lame_internal_flags *gfc, const char* format, ... ) { va_list args; va_start ( args, format ); if ( gfc->report.errorf != NULL ) { gfc->report.errorf( format, args ); } else { (void) vfprintf ( stderr, format, args ); fflush ( stderr ); /* an error function should flush immediately */ } va_end ( args ); } /*********************************************************************** * * routines to detect CPU specific features like 3DNow, MMX, SIMD * * donated by Frank Klemm * added Robert Hegemann 2000-10-10 * ***********************************************************************/ int has_i387 ( void ) { #ifdef HAVE_NASM return 1; #else return 0; /* don't know, assume not */ #endif } int has_MMX ( void ) { #ifdef HAVE_NASM extern int has_MMX_nasm ( void ); return has_MMX_nasm (); #else return 0; /* don't know, assume not */ #endif } int has_3DNow ( void ) { #ifdef HAVE_NASM extern int has_3DNow_nasm ( void ); return has_3DNow_nasm (); #else return 0; /* don't know, assume not */ #endif } int has_SIMD ( void ) { #ifdef HAVE_NASM extern int has_SIMD_nasm ( void ); return has_SIMD_nasm (); #else return 0; /* don't know, assume not */ #endif } int has_SIMD2 ( void ) { #ifdef HAVE_NASM extern int has_SIMD2_nasm ( void ); return has_SIMD2_nasm (); #else return 0; /* don't know, assume not */ #endif } /*********************************************************************** * * some simple statistics * * bitrate index 0: free bitrate -> not allowed in VBR mode * : bitrates, kbps depending on MPEG version * bitrate index 15: forbidden * * mode_ext: * 0: LR * 1: LR-i * 2: MS * 3: MS-i * ***********************************************************************/ void updateStats( lame_internal_flags * const gfc ) { assert ( gfc->bitrate_index < 16u ); assert ( gfc->mode_ext < 4u ); /* count bitrate indices */ gfc->bitrate_stereoMode_Hist [gfc->bitrate_index] [4] ++; /* count 'em for every mode extension in case of 2 channel encoding */ if (gfc->channels_out == 2) gfc->bitrate_stereoMode_Hist [gfc->bitrate_index] [gfc->mode_ext]++; } /* caution: a[] will be resorted!! */ int select_kth_int(int a[], int N, int k) { int i, j, l, r, v, w; l = 0; r = N-1; while (r > l) { v = a[r]; i = l-1; j = r; for (;;) { while (a[++i] < v) /*empty*/; while (a[--j] > v) /*empty*/; if (i >= j) break; /* swap i and j */ w = a[i]; a[i] = a[j]; a[j] = w; } /* swap i and r */ w = a[i]; a[i] = a[r]; a[r] = w; if (i >= k) r = i-1; if (i <= k) l = i+1; } return a[k]; } void disable_FPE(void) { /* extremly system dependent stuff, move to a lib to make the code readable */ /*==========================================================================*/ /* * Disable floating point exceptions */ #if defined(__FreeBSD__) && !defined(__alpha__) { /* seet floating point mask to the Linux default */ fp_except_t mask; mask = fpgetmask(); /* if bit is set, we get SIGFPE on that error! */ fpsetmask(mask & ~(FP_X_INV | FP_X_DZ)); /* DEBUGF("FreeBSD mask is 0x%x\n",mask); */ } #endif #if defined(__riscos__) && !defined(ABORTFP) /* Disable FPE's under RISC OS */ /* if bit is set, we disable trapping that error! */ /* _FPE_IVO : invalid operation */ /* _FPE_DVZ : divide by zero */ /* _FPE_OFL : overflow */ /* _FPE_UFL : underflow */ /* _FPE_INX : inexact */ DisableFPETraps(_FPE_IVO | _FPE_DVZ | _FPE_OFL); #endif /* * Debugging stuff * The default is to ignore FPE's, unless compiled with -DABORTFP * so add code below to ENABLE FPE's. */ #if defined(ABORTFP) #if defined(_MSC_VER) { #include <float.h> unsigned int mask; mask = _controlfp(0, 0); mask &= ~(_EM_OVERFLOW | _EM_UNDERFLOW | _EM_ZERODIVIDE | _EM_INVALID); mask = _controlfp(mask, _MCW_EM); } #elif defined(__CYGWIN__) # define _FPU_GETCW(cw) __asm__ ("fnstcw %0" : "=m" (*&cw)) # define _FPU_SETCW(cw) __asm__ ("fldcw %0" : : "m" (*&cw)) # define _EM_INEXACT 0x00000020 /* inexact (precision) */ # define _EM_UNDERFLOW 0x00000010 /* underflow */ # define _EM_OVERFLOW 0x00000008 /* overflow */ # define _EM_ZERODIVIDE 0x00000004 /* zero divide */ # define _EM_INVALID 0x00000001 /* invalid */ { unsigned int mask; _FPU_GETCW(mask); /* Set the FPU control word to abort on most FPEs */ mask &= ~(_EM_OVERFLOW | _EM_ZERODIVIDE | _EM_INVALID); _FPU_SETCW(mask); } # elif defined(__linux__) { # include <fpu_control.h> # ifndef _FPU_GETCW # define _FPU_GETCW(cw) __asm__ ("fnstcw %0" : "=m" (*&cw)) # endif # ifndef _FPU_SETCW # define _FPU_SETCW(cw) __asm__ ("fldcw %0" : : "m" (*&cw)) # endif /* * Set the Linux mask to abort on most FPE's * if bit is set, we _mask_ SIGFPE on that error! * mask &= ~( _FPU_MASK_IM | _FPU_MASK_ZM | _FPU_MASK_OM | _FPU_MASK_UM ); */ unsigned int mask; _FPU_GETCW(mask); mask &= ~(_FPU_MASK_IM | _FPU_MASK_ZM | _FPU_MASK_OM); _FPU_SETCW(mask); } #endif #endif /* ABORTFP */ } /* end of util.c */