ref: 61f4c085c402af665b436f6d010d61107551d8a3
dir: /sys/src/cmd/astro/moon.c/
#include "astro.h" double k1, k2, k3, k4; double mnom, msun, noded, dmoon; void moon(void) { Moontab *mp; double dlong, lsun, psun; double eccm, eccs, chp, cpe; double v0, t0, m0, j0; double arg1, arg2, arg3, arg4, arg5, arg6, arg7; double arg8, arg9, arg10; double dgamma, k5, k6; double lterms, sterms, cterms, nterms, pterms, spterms; double gamma1, gamma2, gamma3, arglat; double xmp, ymp, zmp; double obl2; /* * the fundamental elements - all referred to the epoch of * Jan 0.5, 1900 and to the mean equinox of date. */ dlong = 270.434164 + 13.1763965268*eday - .001133*capt2 + 2.e-6*capt3; argp = 334.329556 + .1114040803*eday - .010325*capt2 - 12.e-6*capt3; node = 259.183275 - .0529539222*eday + .002078*capt2 + 2.e-6*capt3; lsun = 279.696678 + .9856473354*eday + .000303*capt2; psun = 281.220833 + .0000470684*eday + .000453*capt2 + 3.e-6*capt3; dlong = fmod(dlong, 360.); argp = fmod(argp, 360.); node = fmod(node, 360.); lsun = fmod(lsun, 360.); psun = fmod(psun, 360.); eccm = 22639.550; eccs = .01675104 - .00004180*capt; incl = 18461.400; cpe = 124.986; chp = 3422.451; /* * some subsidiary elements - they are all longitudes * and they are referred to the epoch 1/0.5 1900 and * to the fixed mean equinox of 1850.0. */ v0 = 342.069128 + 1.6021304820*eday; t0 = 98.998753 + 0.9856091138*eday; m0 = 293.049675 + 0.5240329445*eday; j0 = 237.352319 + 0.0830912295*eday; /* * the following are periodic corrections to the * fundamental elements and constants. * arg3 is the "Great Venus Inequality". */ arg1 = 41.1 + 20.2*(capt+.5); arg2 = dlong - argp + 33. + 3.*t0 - 10.*v0 - 2.6*(capt+.5); arg3 = dlong - argp + 151.1 + 16.*t0 - 18.*v0 - (capt+.5); arg4 = node; arg5 = node + 276.2 - 2.3*(capt+.5); arg6 = 313.9 + 13.*t0 - 8.*v0; arg7 = dlong - argp + 112.0 + 29.*t0 - 26.*v0; arg8 = dlong + argp - 2.*lsun + 273. + 21.*t0 - 20.*v0; arg9 = node + 290.1 - 0.9*(capt+.5); arg10 = 115. + 38.5*(capt+.5); arg1 *= radian; arg2 *= radian; arg3 *= radian; arg4 *= radian; arg5 *= radian; arg6 *= radian; arg7 *= radian; arg8 *= radian; arg9 *= radian; arg10 *= radian; dlong += (0.84 *sin(arg1) + 0.31 *sin(arg2) + 14.27 *sin(arg3) + 7.261*sin(arg4) + 0.282*sin(arg5) + 0.237*sin(arg6) + 0.108*sin(arg7) + 0.126*sin(arg8))/3600.; argp += (- 2.10 *sin(arg1) - 0.118*sin(arg3) - 2.076*sin(arg4) - 0.840*sin(arg5) - 0.593*sin(arg6))/3600.; node += (0.63*sin(arg1) + 0.17*sin(arg3) + 95.96*sin(arg4) + 15.58*sin(arg5) + 1.86*sin(arg9))/3600.; t0 += (- 6.40*sin(arg1) - 1.89*sin(arg6))/3600.; psun += (6.40*sin(arg1) + 1.89*sin(arg6))/3600.; dgamma = - 4.318*cos(arg4) - 0.698*cos(arg5) - 0.083*cos(arg9); j0 += 0.33*sin(arg10); /* * the following factors account for the fact that the * eccentricity, solar eccentricity, inclination and * parallax used by Brown to make up his coefficients * are both wrong and out of date. Brown did the same * thing in a different way. */ k1 = eccm/22639.500; k2 = eccs/.01675104; k3 = 1. + 2.708e-6 + .000108008*dgamma; k4 = cpe/125.154; k5 = chp/3422.700; /* * the principal arguments that are used to compute * perturbations are the following differences of the * fundamental elements. */ mnom = dlong - argp; msun = lsun - psun; noded = dlong - node; dmoon = dlong - lsun; /* * solar terms in longitude */ lterms = 0.0; mp = moontab; for(;;) { if(mp->f == 0.0) break; lterms += sinx(mp->f, mp->c[0], mp->c[1], mp->c[2], mp->c[3], 0.0); mp++; } mp++; /* * planetary terms in longitude */ lterms += sinx(0.822, 0,0,0,0, t0-v0); lterms += sinx(0.307, 0,0,0,0, 2.*t0-2.*v0+179.8); lterms += sinx(0.348, 0,0,0,0, 3.*t0-2.*v0+272.9); lterms += sinx(0.176, 0,0,0,0, 4.*t0-3.*v0+271.7); lterms += sinx(0.092, 0,0,0,0, 5.*t0-3.*v0+199.); lterms += sinx(0.129, 1,0,0,0, -t0+v0+180.); lterms += sinx(0.152, 1,0,0,0, t0-v0); lterms += sinx(0.127, 1,0,0,0, 3.*t0-3.*v0+180.); lterms += sinx(0.099, 0,0,0,2, t0-v0); lterms += sinx(0.136, 0,0,0,2, 2.*t0-2.*v0+179.5); lterms += sinx(0.083, -1,0,0,2, -4.*t0+4.*v0+180.); lterms += sinx(0.662, -1,0,0,2, -3.*t0+3.*v0+180.0); lterms += sinx(0.137, -1,0,0,2, -2.*t0+2.*v0); lterms += sinx(0.133, -1,0,0,2, t0-v0); lterms += sinx(0.157, -1,0,0,2, 2.*t0-2.*v0+179.6); lterms += sinx(0.079, -1,0,0,2, -8.*t0+6.*v0+162.6); lterms += sinx(0.073, 2,0,0,-2, 3.*t0-3.*v0+180.); lterms += sinx(0.643, 0,0,0,0, -t0+j0+178.8); lterms += sinx(0.187, 0,0,0,0, -2.*t0+2.*j0+359.6); lterms += sinx(0.087, 0,0,0,0, j0+289.9); lterms += sinx(0.165, 0,0,0,0, -t0+2.*j0+241.5); lterms += sinx(0.144, 1,0,0,0, t0-j0+1.0); lterms += sinx(0.158, 1,0,0,0, -t0+j0+179.0); lterms += sinx(0.190, 1,0,0,0, -2.*t0+2.*j0+180.0); lterms += sinx(0.096, 1,0,0,0, -2.*t0+3.*j0+352.5); lterms += sinx(0.070, 0,0,0,2, 2.*t0-2.*j0+180.); lterms += sinx(0.167, 0,0,0,2, -t0+j0+178.5); lterms += sinx(0.085, 0,0,0,2, -2.*t0+2.*j0+359.2); lterms += sinx(1.137, -1,0,0,2, 2.*t0-2.*j0+180.3); lterms += sinx(0.211, -1,0,0,2, -t0+j0+178.4); lterms += sinx(0.089, -1,0,0,2, -2.*t0+2.*j0+359.2); lterms += sinx(0.436, -1,0,0,2, 2.*t0-3.*j0+7.5); lterms += sinx(0.240, 2,0,0,-2, -2.*t0+2.*j0+179.9); lterms += sinx(0.284, 2,0,0,-2, -2.*t0+3.*j0+172.5); lterms += sinx(0.195, 0,0,0,0, -2.*t0+2.*m0+180.2); lterms += sinx(0.327, 0,0,0,0, -t0+2.*m0+224.4); lterms += sinx(0.093, 0,0,0,0, -2.*t0+4.*m0+244.8); lterms += sinx(0.073, 1,0,0,0, -t0+2.*m0+223.3); lterms += sinx(0.074, 1,0,0,0, t0-2.*m0+306.3); lterms += sinx(0.189, 0,0,0,0, node+180.); /* * solar terms in latitude */ sterms = 0; for(;;) { if(mp->f == 0) break; sterms += sinx(mp->f, mp->c[0], mp->c[1], mp->c[2], mp->c[3], 0); mp++; } mp++; cterms = 0; for(;;) { if(mp->f == 0) break; cterms += cosx(mp->f, mp->c[0], mp->c[1], mp->c[2], mp->c[3], 0); mp++; } mp++; nterms = 0; for(;;) { if(mp->f == 0) break; nterms += sinx(mp->f, mp->c[0], mp->c[1], mp->c[2], mp->c[3], 0); mp++; } mp++; /* * planetary terms in latitude */ pterms = sinx(0.215, 0,0,0,0, dlong); /* * solar terms in parallax */ spterms = 3422.700; for(;;) { if(mp->f == 0) break; spterms += cosx(mp->f, mp->c[0], mp->c[1], mp->c[2], mp->c[3], 0); mp++; } /* * planetary terms in parallax */ spterms = spterms; /* * computation of longitude */ lambda = (dlong + lterms/3600.)*radian; /* * computation of latitude */ arglat = (noded + sterms/3600.)*radian; gamma1 = 18519.700 * k3; gamma2 = -6.241 * k3*k3*k3; gamma3 = 0.004 * k3*k3*k3*k3*k3; k6 = (gamma1 + cterms) / gamma1; beta = k6 * (gamma1*sin(arglat) + gamma2*sin(3.*arglat) + gamma3*sin(5.*arglat) + nterms) + pterms; if(flags['o']) beta -= 0.6; beta *= radsec; /* * computation of parallax */ spterms = k5 * spterms *radsec; hp = spterms + (spterms*spterms*spterms)/6.; rad = hp/radsec; rp = 1.; semi = .0799 + .272453*(hp/radsec); if(dmoon < 0.) dmoon += 360.; mag = dmoon/360.; /* * change to equatorial coordinates */ lambda += phi; obl2 = obliq + eps; xmp = rp*cos(lambda)*cos(beta); ymp = rp*(sin(lambda)*cos(beta)*cos(obl2) - sin(obl2)*sin(beta)); zmp = rp*(sin(lambda)*cos(beta)*sin(obl2) + cos(obl2)*sin(beta)); alpha = atan2(ymp, xmp); delta = atan2(zmp, sqrt(xmp*xmp+ymp*ymp)); meday = eday; mhp = hp; geo(); } double sinx(double coef, int i, int j, int k, int m, double angle) { double x; x = i*mnom + j*msun + k*noded + m*dmoon + angle; x = coef*sin(x*radian); if(i < 0) i = -i; for(; i>0; i--) x *= k1; if(j < 0) j = -j; for(; j>0; j--) x *= k2; if(k < 0) k = -k; for(; k>0; k--) x *= k3; if(m & 1) x *= k4; return x; } double cosx(double coef, int i, int j, int k, int m, double angle) { double x; x = i*mnom + j*msun + k*noded + m*dmoon + angle; x = coef*cos(x*radian); if(i < 0) i = -i; for(; i>0; i--) x *= k1; if(j < 0) j = -j; for(; j>0; j--) x *= k2; if(k < 0) k = -k; for(; k>0; k--) x *= k3; if(m & 1) x *= k4; return x; }