
A Manual for the Assembler
Rob Pike

Lucent Technologies, Bell Labs

Machines

There is an assembler for each of the MIPS, SPARC, Intel 386, ARM, PowerPC, Motorola 68010, and
Motorola 68020. The 68020 assembler, 2a, is the oldest and in many ways the prototype. The assemblers
are really just variations of a single program: they share many properties such as left-to-right assignment
order for instruction operands and the synthesis of macro instructions such as MOVE to hide the peculiarities
of the load and store structure of the machines. To keep things concrete, the first part of this manual is
specifically about the 68020. At the end is a description of the differences among the other assemblers.

Registers

All pre-defined symbols in the assembler are upper-case. Data registers are R0 through R7; address
registers are A0 through A7; floating-point registers are F0 through F7.

A pointer in A6 is used by the C compiler to point to data, enabling short addresses to be used more
often. The value of A6 is constant and must be set during C program initialization to the address of the
externally-defined symbol a6base.

The following hardware registers are defined in the assembler; their meaning should be obvious
given a 68020 manual: CAAR, CACR, CCR, DFC, ISP, MSP, SFC, SR, USP, and VBR.

The assembler also defines several pseudo-registers that manipulate the stack: FP, SP, and TOS. FP is
the frame pointer, so 0(FP) is the first argument, 4(FP) is the second, and so on. SP is the local stack
pointer, where automatic variables are held (SP is a pseudo-register only on the 68020); 0(SP) is the first
automatic, and so on as with FP. Finally, TOS is the top-of-stack register, used for pushing parameters to
procedures, saving temporary values, and so on.

The assembler and loader track these pseudo-registers so the above statements are true regardless of
what has been pushed on the hardware stack, pointed to by A7. The name A7 refers to the hardware stack
pointer, but beware of mixed use of A7 and the above stack-related pseudo-registers, which will cause trou-
ble. Note, too, that the PEA instruction is observed by the loader to alter SP and thus will insert a corre-
sponding pop before all returns. The assembler accepts a label-like name to be attached to FP and SP uses,
such as p+0(FP), to help document that p is the first argument to a routine. The name goes in the symbol
table but has no significance to the result of the program.

Referring to data

All external references must be made relative to some pseudo-register, either PC (the virtual program
counter) or SB (the ‘‘static base’’ register). PC counts instructions, not bytes of data. For example, to branch
to the second following instruction, that is, to skip one instruction, one may write

BRA 2(PC)

Labels are also allowed, as in

BRA return
NOP

return:
RTS

When using labels, there is no (PC) annotation.

The pseudo-register SB refers to the beginning of the address space of the program. Thus, references
to global data and procedures are written as offsets to SB, as in

 This paper is based on ‘‘A Manual for the Plan 9 assembler’’ by Rob Pike in Plan 9 Programmer’s Manual, Volume 2 (Second Edition) ,
adapted to reflect the current suite of Inferno assemblers.

- 2 -

MOVL $array(SB), TOS

to push the address of a global array on the stack, or

MOVL array+4(SB), TOS

to push the second (4-byte)element of the array. Note the use of an offset; the complete list of addressing
modes is given below. Similarly, subroutine calls must use SB:

BSR exit(SB)

File-staticvariables have syntax

local<>+4(SB)

The <> will be filled in at load time by a unique integer.

When a program starts, it must execute

MOVL $a6base(SB), A6

before accessing any global data. (On machines such as the MIPS and SPARC that cannot load a register in
a single instruction, constants are loaded through the static base register. The loader recognizes code that
initializes the static base register and treats it specially. You must be careful, however, not to load large
constants on such machines when the static base register is not set up, such as early in interrupt routines.)

Expressions

Expressions are mostly what one might expect. Where an offset or a constant is expected, a primary
expression with unary operators is allowed. A general C constant expression is allowed in parentheses.

Source files are preprocessed exactly as in the C compiler, so #define and #include work.

Addressing modes

The simple addressing modes are shared by all the assemblers. Here, for completeness, follows a
table of all the 68020 addressing modes, since that machine has the richest set. In the table, o is an offset,
which if zero may be elided. Many of the modes listed have the same name; scrutiny of the format will
show what default is being applied. For instance, indexed mode with no address register supplied operates
as though a zero-valuedregister were used. For "offset" read "displacement." For ".s" read one of .L, or
.W followed by *1, *2, *4, or *8 to indicate the size and scaling of the data.

- 3 -

data register R0
address register A0
floating-pointregister F0
special names CAAR, CACR, etc.
constant $con
floating point constant $fcon
external symbol name+o(SB)
local symbol name<>+o(SB)
automatic symbol name+o(SP)
argument name+o(FP)
address of external $name+o(SB)
address of local $name<>+o(SB)
indirect post-increment (A0)+
indirect pre-decrement -(A0)
indirect with offset o(A0)
indexed with offset o()(R0.s)
indexed with offset o(A0)(R0.s)
external indexed name+o(SB)(R0.s)
local indexed name<>+o(SB)(R0.s)
automatic indexed name+o(SP)(R0.s)
parameter indexed name+o(FP)(R0.s)
offset indirect post-indexed d(o())(R0.s)
offset indirect post-indexed d(o(A0))(R0.s)
external indirect post-indexed d(name+o(SB))(R0.s)
local indirect post-indexed d(name<>+o(SB))(R0.s)
automatic indirect post-indexed d(name+o(SP))(R0.s)
parameter indirect post-indexed d(name+o(FP))(R0.s)
offset indirect pre-indexed d(o()(R0.s))
offset indirect pre-indexed d(o(A0))
offset indirect pre-indexed d(o(A0)(R0.s))
external indirect pre-indexed d(name+o(SB))
external indirect pre-indexed d(name+o(SB)(R0.s))
local indirect pre-indexed d(name<>+o(SB))
local indirect pre-indexed d(name<>+o(SB)(R0.s))
automatic indirect pre-indexed d(name+o(SP))
automatic indirect pre-indexed d(name+o(SP)(R0.s))
parameter indirect pre-indexed d(name+o(FP))
parameter indirect pre-indexed d(name+o(FP)(R0.s))

Laying down data

Placing data in the instruction stream, say for interrupt vectors, is easy: the pseudo-instructionsLONG
and WORD(but not BYTE) lay down the value of their single argument, of the appropriate size, as if it were
an instruction:

LONG $12345

places the long 12345 (base 10) in the instruction stream. (On most machines, the only such operator is
WORDand it lays down 32-bitquantities. The 386 has all three: LONG, WORD, and BYTE.)

Placing information in the data section is more painful. The pseudo-instructionDATAdoes the work,
given two arguments: an address at which to place the item, including its size, and the value to place there.
For example, to define a character array array containing the characters abc and a terminating null:

DATA array+0(SB)/1, $’a’
DATA array+1(SB)/1, $’b’
DATA array+2(SB)/1, $’c’
GLOBL array(SB), $4

or

DATA array+0(SB)/4, $"abc\z"
GLOBL array(SB), $4

- 4 -

The /1 defines the number of bytes to define, GLOBLmakes the symbol global, and the $4 says how many
bytes the symbol occupies. Uninitialized data is zeroed automatically. The character \z is equivalent to the
C \0. The string in a DATAstatement may contain a maximum of eight bytes; build larger strings piecewise.
Two pseudo-instructions,DYNTand INIT , allow the (obsolete) Alef compilers to build dynamic type infor-
mation during the load phase. The DYNTpseudo-instructionhas two forms:

DYNT , ALEF_SI_5+0(SB)
DYNT ALEF_AS+0(SB), ALEF_SI_5+0(SB)

In the first form, DYNTdefines the symbol to be a small unique integer constant, chosen by the loader, which
is some multiple of the word size. In the second form, DYNTdefines the second symbol in the same way,
places the address of the most recently defined text symbol in the array specified by the first symbol at the
index defined by the value of the second symbol, and then adjusts the size of the array accordingly.

The INIT pseudo-instructiontakes the same parameters as a DATAstatement. Its symbol is used as
the base of an array and the data item is installed in the array at the offset specified by the most recent DYNT
pseudo-instruction. The size of the array is adjusted accordingly. The DYNTand INIT pseudo-instructions
are not implemented on the 68020.

Defining a procedure

Entry points are defined by the pseudo-operationTEXT, which takes as arguments the name of the
procedure (including the ubiquitous (SB)) and the number of bytes of automatic storage to pre-allocateon
the stack, which will usually be zero when writing assembly language programs. On machines with a link
register, such as the MIPS and SPARC, the special value -4instructs the loader to generate no PC save and
restore instructions, even if the function is not a leaf. Here is a complete procedure that returns the sum of
its two arguments:

TEXT sum(SB), $0
MOVL arg1+0(FP), R0
ADDL arg2+4(FP), R0
RTS

An optional middle argument to the TEXTpseudo-opis a bit field of options to the loader. Setting the 1 bit
suspends profiling the function when profiling is enabled for the rest of the program. For example,

TEXT sum(SB), 1, $0
MOVL arg1+0(FP), R0
ADDL arg2+4(FP), R0
RTS

will not be profiled; the first version above would be. Subroutines with peculiar state, such as system call
routines, should not be profiled.

Setting the 2 bit allows multiple definitions of the same TEXT symbol in a program; the loader will
place only one such function in the image. It was emitted only by the Alef compilers.

Subroutines to be called from C should place their result in R0, even if it is an address. Floating point
values are returned in F0. Functions that return a structure to a C program receive as their first argument
the address of the location to store the result; R0 is unused in the calling protocol for such procedures. A
subroutine is responsible for saving its own registers, and therefore is free to use any registers without sav-
ing them (‘‘caller saves’’). A6 and A7 are the exceptions as described above.

When in doubt

If you get confused, try using the -S option to 2c and compiling a sample program. The standard
output is valid input to the assembler.

Instructions

The instruction set of the assembler is not identical to that of the machine. It is chosen to match what
the compiler generates, augmented slightly by specific needs of the operating system. For example, 2a does
not distinguish between the various forms of MOVEinstruction: move quick, move address, etc. Instead the
context does the job. For example,

- 5 -

MOVL $1, R1
MOVL A0, R2
MOVW SR, R3

generates official MOVEQ, MOVEA, and MOVESR instructions. A number of instructions do not have the syn-
tax necessary to specify their entire capabilities. Notable examples are the bitfield instructions, the multiply
and divide instructions, etc. For a complete set of generated instruction names (in 2a notation, not
Motorola’s) see the file /sys/src/cmd/2c/2.out.h. Despite its name, this file contains an enumeration
of the instructions that appear in the intermediate files generated by the compiler, which correspond exactly
to lines of assembly language.

The MC68000 assembler, 1a, is essentially the same, honoring the appropriate subset of the instruc-
tions and addressing modes. The definitions of these are, nonetheless, part of 2.out.h.

Laying down instructions

The loader modifies the code produced by the assembler and compiler. It folds branches, copies short
sequences of code to eliminate branches, and discards unreachable code. The first instruction of every func-
tion is assumed to be reachable. The pseudo-instructionNOP, which you may see in compiler output, means
no instruction at all, rather than an instruction that does nothing. The loader discards all NOP’s.

To generate a true NOP instruction, or any other instruction not known to the assembler, use a WORD
pseudo-instruction. Such instructions on RISCs are not scheduled by the loader and must have their delay
slots filled manually.

MIPS

The registers are only addressed by number: R0 through R31. R29 is the stack pointer; R30 is used as
the static base pointer, the analogue of A6 on the 68020. Its value is the address of the global symbol
setR30(SB). The register holding returned values from subroutines is R1. When a function is called,
space for the first argument is reserved at 0(FP) but in C (not Alef) the value is passed in R1 instead.

The loader uses R28 as a temporary. The system uses R26 and R27 as interrupt-timetemporaries.
Therefore none of these registers should be used in user code.

The control registers are not known to the assembler. Instead they are numbered registers M0, M1, etc.
Use this trick to access, say, STATUS:

#define STATUS 12
MOVW M(STATUS), R1

Floating point registers are called F0 through F31. By convention, F24 must be initialized to the
value 0.0, F26 to 0.5, F28 to 1.0, and F30 to 2.0; this is done by the operating system.

The instructions and their syntax are different from those of the manufacturer’s manual. There are no
lui and kin; instead there are MOVW (move word), MOVH (move halfword), and MOVB (move byte) pseudo-
instructions. If the operand is unsigned, the instructions are MOVHU and MOVBU. The order of operands is
from left to right in dataflow order, just as on the 68020 but not as in MIPS documentation. This means that
the Bcond instructions are reversed with respect to the book; for example, a va BGTZ generates a MIPS
bltz instruction.

The assembler is for the R2000, R3000, and most of the R4000 and R6000 architectures. It understands
the 64-bitinstructions MOVV, MOVVL, ADDV, ADDVU, SUBV, SUBVU, MULV, MULVU, DIVV, DIVVU, SLLV, SRLV,
and SRAV. The assembler does not have any cache, load-linked,or store-conditionalinstructions.

Some assembler instructions are expanded into multiple instructions by the loader. For example the
loader may convert the load of a 32 bit constant into an lui followed by an ori.

Assembler instructions should be laid out as if there were no load, branch, or floating point compare
delay slots; the loader will rearrange�schedule�the instructions to guarantee correctness and improve per-
formance. The only exception is that the correct scheduling of instructions that use control registers varies
from model to model of machine (and is often undocumented) so you should schedule such instructions by
hand to guarantee correct behavior. The loader generates

NOR R0, R0, R0

- 6 -

when it needs a true no-opinstruction. Use exactly this instruction when scheduling code manually; the
loader recognizes it and schedules the code before it and after it independently. Also, WORD pseudo-opsare
scheduled like no-ops.

The NOSCHED pseudo-opdisables instruction scheduling (scheduling is enabled by default); SCHED
re-enablesit. Branch folding, code copying, and dead code elimination are disabled for instructions that are
not scheduled.

SPARC

Once you understand the Plan 9 model for the MIPS, the SPARC is familiar. Registers have numeri-
cal names only: R0 through R31. Forget about register windows: Plan 9 doesn’t use them at all. The
machine has 32 global registers, period. R1 [sic] is the stack pointer. R2 is the static base register, with
value the address of setSB(SB). R7 is the return register and also the register holding the first argument
to a C (not Alef) function, again with space reserved at 0(FP). R14 is the loader temporary.

Floating-pointregisters are exactly as on the MIPS.

The control registers are known by names such as FSR. The instructions to access these registers are
MOVW instructions, for example

MOVW Y, R8

for the SPARC instruction

rdy %r8

Move instructions are similar to those on the MIPS: pseudo-operations that turn into appropriate
sequences of sethi instructions, adds, etc. Instructions read from left to right. Because the arguments are
flipped to SUBCC, the condition codes are not inverted as on the MIPS.

The syntax for the ASI stuff is, for example to move a word from ASI 2:

MOVW (R7, 2), R8

The syntax for double indexing is

MOVW (R7+R8), R9

The SPARC’s instruction scheduling is similar to the MIPS’s. The official no-opinstruction is:

ORN R0, R0, R0

i386

The assembler assumes 32-bitprotected mode. The register names are SP, AX, BX, CX, DX, BP, DI, and
SI. The stack pointer (not a pseudo-register)is SP and the return register is AX. There is no physical frame
pointer but, as for the MIPS, FP is a pseudo-registerthat acts as a frame pointer.

Opcode names are mostly the same as those listed in the Intel manual with an L, W, or B appended to
identify 32-bit,16-bit,and 8-bitoperations. The exceptions are loads, stores, and conditionals. All load and
store opcodes to and from general registers, special registers (such as CR0, CR3, GDTR, IDTR, SS, CS,
DS, ES, FS, and GS) or memory are written as

MOVxsrc,dst

where x is L, W, or B. Thus to get AL use a MOVB instruction. If you need to access AH, you must mention it
explicitly in a MOVB:

MOVB AH, BX

There are many examples of illegal moves, for example,

MOVB BP, DI

that the loader actually implements as pseudo-operations.

The names of conditions in all conditional instructions (J, SET) follow the conventions of the 68020
instead of those of the Intel assembler: JOS, JOC, JCS, JCC, JEQ, JNE, JLS, JHI, JMI, JPL, JPS, JPC, JLT,
JGE, JLE, and JGT instead of JO, JNO, JB, JNB, JZ, JNZ, JBE, JNBE, JS, JNS, JP, JNP, JL, JNL, JLE, and
JNLE.

- 7 -

The addressing modes have syntax like AX, (AX) , (AX)(BX*4) , 10(AX) , and 10(AX)(BX*4) . The
offsets from AX can be replaced by offsets from FP or SB to access names, for example
extern+5(SB)(AX*2) .

Other notes: Non-relativeJMP and CALL have a * added to the syntax. Only LOOP, LOOPEQ, and
LOOPNEare legal loop instructions. Only REPand REPNare recognized repeaters. These are not prefixes,
but rather stand-aloneopcodes that precede the strings, for example

CLD; REP; MOVSL

Segment override prefixes in MOD/RMfields are not supported.

ARM

The assembler provides access to R0 through R14 and the PC. The stack pointer is R13, the link regis-
ter is R14, and the static base register is R12. R0 is the return register and also the register holding the first
argument to a subroutine. The assembler supports the CPSRand SPSR registers. It also knows about
coprocessor registers C0 through C15. Floating registers are F0 through F7, FPSRand FPCR.

As with the other architectures, loads and stores are called MOV, e.g. MOVWfor load word or store
word, and MOVMfor load or store multiple, depending on the operands.

Addressing modes are supported by suffixes to the instructions: .IA (increment after), .IB (incre-
ment before), .DA (decrement after), and .DB (decrement before). These can only be used with the MOV
instructions. The move multiple instruction, MOVM, defines a range of registers using brackets, e.g.
[R0-R12] . The special MOVMaddressing mode bits W, U, and P are written in the same manner, for exam-
ple, MOVM.DB.W. A .S suffix allows a MOVMinstruction to access user R13 and R14 when in another proces-
sor mode. Shifts and rotates in addressing modes are supported by binary operators << (logical left shift),
>> (logical right shift), -> (arithmetic right shift), and @>(rotate right); for example R7>>R2. The assembler
does not support indexing by a shifted expression; only names can be doubly indexed.

Any instruction can be followed by a suffix that makes the instruction conditional: .EQ , .NE , and so
on, as in the ARM manual, with synonyms .HS (for .CS) and .LO (for .CC), for example ADD.NE. Arith-
metic and logical instructions can have a .S suffix, as ARM allows, to set condition codes.

The syntax of the MCRand MRCcoprocessor instructions is largely as in the manual, with the usual
adjustments. The assembler directly supports only the ARM floating-pointcoprocessor operations used by
the compiler: CMP, ADD, SUB, MUL, and DIV , all with F or D suffix selecting single or double precision.
Floating-pointload or store become MOVFand MOVD. Conversion instructions are also specified by moves:
MOVWD, MOVWF, MOVDW, MOVWD, MOVFD, and MOVDF.

PowerPC

The PowerPC follows the Plan 9 model set by the MIPS and SPARC, not the elaborate ABIs. The 32-
bit instructions of the 60x and 8xx PowerPC architectures are supported; there is no support for the older
POWER instructions. Registers are R0 through R31. R0 is initialized to zero; this is done by C start up code
and assumed by the compiler and loader. R1 is the stack pointer. R2 is the static base register, with value
the address of setSB(SB) . R3 is the return register and also the register holding the first argument to a C
(not Alef) function, with space reserved at 0(FP) as on the MIPS. R31 is the loader temporary. The exter-
nal registers in Plan 9’s C are allocated from R30 down.

Floating point registers are called F0 through F31 . By convention, several registers are initialized to
specific values; this is done by the operating system. F27 must be initialized to the value
0x4330000080000000 (used by float-to-intconversion), F28 to the value 0.0, F29 to 0.5, F30 to 1.0, and
F31 to 2.0.

As on the MIPS and SPARC, the assembler accepts arbitrary literals as operands to MOVW, and also to
ADD and others where ‘immediate’ variants exist, and the loader generates sequences of addi , addis ,
oris , etc. as required. The register indirect addressing modes use the same syntax as the SPARC, including
double indexing when allowed.

The instruction names are generally derived from the Motorola ones, subject to slight transformation:
the ‘. ’ marking the setting of condition codes is replaced by CC, and when the letter ‘o’ represents ‘OE=1’ it
is replaced by V. Thus add , addo. and subfzeo. become ADD, ADDVCCand SUBFZEVCC. As well as the
three-operandconditional branch instruction BC, the assembler provides pseudo-instructionsfor the com-

- 8 -

mon cases: BEQ, BNE, BGT, BGE, BLT, BLE, BVC, and BVS. The unconditional branch instruction is BR. Indi-
rect branches use (CTR) or (LR) as target.

Load or store operations are replaced by MOV variants in the usual way: MOVW (move word), MOVH
(move halfword with sign extension), and MOVB (move byte with sign extension, a pseudo-instruction),with
unsigned variants MOVHZ and MOVBZ, and byte-reversingMOVWBR and MOVHBR. ‘Load or store with update’
versions are MOVWU, MOVHU, and MOVBZU. Load or store multiple is MOVMW. The exceptions are the string
instructions, which are LSW and STSW, and the reservation instructions lwarx and stwcx., which are LWAR
and STWCCC, all with operands in the usual data-floworder. Floating-pointload or store instructions are
FMOVD, FMOVDU, FMOVS, and FMOVSU. The register to register move instructions fmr and fmr. are written
FMOVD and FMOVDCC.

The assembler knows the commonly used special purpose registers: CR, CTR, DEC, LR, MSR, and XER.
The rest, which are often architecture-dependent,are referenced as SPR(n). The segment registers of the
60x series are similarly SEG(n), but n can also be a register name, as in SEG(R3). Moves between special
purpose registers and general purpose ones, when allowed by the architecture, are written as MOVW, replac-
ing mfcr, mtcr, mfmsr, mtmsr, mtspr, mfspr, mftb, and many others.

The fields of the condition register CR are referenced as CR(0) through CR(7). They are used by the
MOVFL (move field) pseudo-instruction,which produces mcrf or mtcrf. For example:

MOVFL CR(3), CR(0)
MOVFL R3, CR(1)
MOVFL R3, $7, CR

They are also accepted in the conditional branch instruction, for example

BEQ CR(7), label

Fields of the FPSCR are accessed using MOVFL in a similar way:

MOVFL FPSCR, F0
MOVFL F0, FPSCR
MOVFL F0, $7, FPSCR
MOVFL $0, FPSCR(3)

producing mffs, mtfsf, or mtfsfi as appropriate.

