The Inferno Operating System

Sean Dorward
Rob Pike
David Leo Presotto
Dennis M. Ritchie
Howard Trickey
Phil Winterbottom

Computing Science Research Center
Lucent Technologies, Bell Labs
Murray Hill, New Jersey
USA

ABSTRACT

Inferno is an operating system for creating and supporting distributed services. It was
originally developed by the Computing Science Research Center of Bell Labs, the R&D
arm of Lucent Technologies, and further developed by other groups in Lucent.

Inferno was designed specifically as a commercial product, both for licensing in the mar-
ketplace and for use within new Lucent offerings. It encapsulates many years of Bell Labs
research in operating systems, languages, on-the-fly compilers, graphics, security, net-
working and portability.

Introduction

Inferno is intended to be used in a variety of network environments, for example those supporting
advanced telephones, hand-held devices, TV set-top boxes attached to cable or satellite systems, and inex-
pensive Internet computers, but also in conjunction with traditional computing systems.

The most visible new environments involve cable television, direct satellite broadcast, the Internet, and
other networks. As the entertainment, telecommunications, and computing industries converge and inter-
connect, a variety of public data networks are emerging, each potentially as useful and profitable as the tele-
phone system. Unlike the telephone system, which started with standard terminals and signaling, these net-
works are developing in a world of diverse terminals, network hardware, and protocols. Only a well-
designed, economical operating system can insulate the various providers of content and services from the
equally varied transport and presentation platforms. Inferno is a network operating system for this new
world.

Inferno’s definitive strength lies in its portability and versatility across several dimensions:

. Portability across processors: it currently runs on Intel, Sparc, MIPS, ARM, HP-PA, and PowerPC
architectures and is readily portable to others.

o Portability across environments: it runs as a stand-alone operating system on small terminals, and
also as a user application under Windows NT, Windows 95, Unix (Irix, Solaris, FreeBSD, Linux, AIX,
HP/UX) and Plan 9. In all of these environments, Inferno applications see an identical interface.

. Distributed design: the identical environment is established at the user’s terminal and at the server,
and each may import the resources (for example, the attached I/O devices or networks) of the other.
Aided by the communications facilities of the run-time system, applications may be split easily (and
even dynamically) between client and server.

o Minimal hardware requirements: it runs useful applications stand-alone on machines with as little as
1 MB of memory, and does not require memory-mapping hardware.

Originally appeared in the Bell Labs Technical Journal, Vol. 2, No. 1, Winter 1997, pp. 5-18.
Minor revisions have been made by Vita Nuova to reflect subsequent changes to Inferno.
Copyright © 1997 Lucent Technologies Inc. All rights reserved.

o Portable applications: Inferno applications are written in the type- safelanguage Limbo, whose binary
representation is identical over all platforms.

. Dynamic adaptability: applications may, depending on the hardware or other resources available,
load different program modules to perform a specific function. For example, a video player applica-
tion might use any of several different decoder modules.

Underlying the design of Inferno is a model of the diversity of application areas it intends to stimulate.
Many providers are interested in purveying media and services: telephone network service providers,
WWW servers, cable companies, merchants, various information providers. There are many connection
technologies: ordinary telephone modems, ISDN, ATM, the Internet, analog broadcast or cable TV, cable
modems, digital video on demand, and other interactive TV systems.

Applications more clearly related to Lucent’s current and planned product offerings include control of
switches and routers, and the associated operations system facilities needed to support them. For example,
Inferno software controls an IP switch/router for voice and data being developed by Lucent’s Bell Labs
research and Network Systems organizations. An Inferno- based firewall (Signet) is being used to secure
outside access to the Research Internet connection.

Finally, there are existing or potential hardware endpoints. Some are in consumers’ homes: PCs, game con-
soles, newer set- topboxes. Some are inside the networks themselves: nodes for billing, network monitoring
or provisioning. The higher ends of these spectra, epitomized by fully interactive TV with video on
demand, may be fascinating, but have developed more slowly than expected. One reason is the cost of the
set- topbox, especially its memory requirements. Portable terminals, because of weight and cost considera-
tions, are similarly constrained.

Inferno is parsimonious enough in its resource requirements to support interesting applications on today’s
hardware, while being versatile enough to grow into the future. In particular, it enables developers to create
applications that will work across a range of facilities. An example: an interactive shopping catalog that
works in text mode over a POTS modem, shows still pictures (perhaps with audio) of the merchandise over
ISDN, and includes video clips over digital cable.

Clearly not everyone who deploys an Inferno- basedsolution will want to span the whole range of possibili-
ties, but the system architecture should be constrained only by the desired markets and the available inter-
connection and server technologies, not by the software.

Inferno interfaces
The role of the Inferno system is to create several standard interfaces for its applications:

o Applications use various resources internal to the system, such as a consistent virtual machine that
runs the application programs, together with library modules that perform services as simple as
string manipulation through more sophisticated graphics services for dealing with text, pictures,
higher- leveltoolkits, and video.

o Applications exist in an external environment containing resources such as data files that can be read
and manipulated, together with objects that are named and manipulated like files but are more active.
Devices (for example a hand- heldremote control, an MPEG decoder or a network interface) present
themselves to the application as files.

o Standard protocols exist for communication within and between separate machines running Inferno,
so that applications can cooperate.

At the same time, Inferno uses interfaces supplied by an existing environment, either bare hardware or stan-
dard operating systems and protocols.

Most typically, an Inferno- basedservice would consist of many relatively cheap terminals running Inferno
as a native system, and a smaller number of large machines running Inferno as a hosted system. On these
server machines Inferno might interface to databases, transaction systems, existing OA&M facilities, and
other resources provided under the native operating system. The Inferno applications themselves would
run either on the client or server machines, or both.

External Environment of Inferno Applications

The purpose of most Inferno applications is to present information or media to the user; thus applications
must locate the information sources in the network and construct a local representation of them. The infor-
mation flow is not one- way:the user’s terminal (whether a network computer, TV set- top, PC, or video-

phone) is also an information source and its devices represent resources to applications. Inferno draws
heavily on the design of the Plan 9 operating system [1] in the way it presents resources to these applica-
tions.

The design has three principles.

o All resources are named and accessed like files in a forest of hierarchical file systems.

. The disjoint resource hierarchies provided by different services are joined together into a single pri-
vate hierarchical name space.

. A communication protocol, called Styx, is applied uniformly to access these resources, whether local
or remote.

In practice, most applications see a fixed set of files organized as a directory tree. Some of the files contain
ordinary data, but others represent more active resources. Devices are represented as files, and device
drivers (such as a modem, an MPEG decoder, a network interface, or the TV screen) attached to a particular
hardware box present themselves as small directories. These directories typically containing two files, dat a
and ct |, which respectively perform actual device input/output and control operations. System services
also live behind file names. For example, an Internet domain name server might be attached to an agreed-
upon name (say / net/ dns); after writing to this file a string representing a symbolic Internet domain
name, a subsequent read from the file would return the corresponding numeric Internet address.

The glue that connects the separate parts of the resource name space together is the Styx protocol. Within
an instance of Inferno, all the device drivers and other internal resources respond to the procedural version
of Styx. The Inferno kernel implements a mount driver that transforms file system operations into remote
procedure calls for transport over a network. On the other side of the connection, a server unwraps the Styx
messages and implements them using resources local to it. Thus, it is possible to import parts of the name
space (and thus resources) from other machines.

To extend the example above, it is unlikely that a set- topbox would store the code needed for an Internet
domain name- serverwithin itself. Instead, an Internet browser would import the / net / dns resource into
its own name space from a server machine across a network.

The Styx protocol lies above and is independent of the communications transport layer; it is readily carried
over TCP/IP, PPP, ATM or various modem transport protocols.

Internal Environment of Inferno Applications

Inferno applications are written in a new language called Limbo [2], which was designed specifically for the
Inferno environment. Its syntax is influenced by C and Pascal, and it supports the standard data types com-
mon to them, together with several higher- leveldata types such as lists, tuples, strings, dynamic arrays, and
simple abstract data types.

In addition, Limbo supplies several advanced constructs carefully integrated into the Inferno virtual
machine. In particular, a communication mechanism called a channel is used to connect different Limbo
tasks on the same machine or across the network. A channel transports typed data in a machine-
independent fashion, so that complex data structures (including channels themselves) may be passed
between Limbo tasks or attached to files in the name space for language- level communication between
machines.

Multi- tasking is supported directly by the Limbo language: independently scheduled threads of control
may be spawned, and an al t statement is used to coordinate the channel communication between tasks
(that is, al t is used to select one of several channels that are ready to communicate). By building channels
and tasks into the language and its virtual machine, Inferno encourages a communication style that is easy
to use and safe.

Limbo programs are built of modules, which are self- containedunits with a well- definedinterface containing
functions (methods), abstract data types, and constants defined by the module and visible outside it. Mod-
ules are accessed dynamically; that is, when one module wishes to make use of another, it dynamically exe-
cutes a | oad statement naming the desired module, and uses a returned handle to access the new module.
When the module is no longer in use, its storage and code will be released. The flexibility of the modular
structure contributes to the smallness of typical Inferno applications, and also to their adaptability. For
example, in the shopping catalog described above, the application’s main module checks dynamically for
the existence of the video resource. If it is unavailable, the video- decodermodule is never loaded.

Limbo is fully type- checkedat compile- and run- time;for example, pointers, besides being more restricted
than in C, are checked before being dereferenced, and the type- consistencyof a dynamically loaded module
is checked when it is loaded. Limbo programs run safely on a machine without memory- protectionhard-
ware. Moreover, all Limbo data and program objects are subject to a garbage collector, built deeply into the
Limbo run- timesystem. All system data objects are tracked by the virtual machine and freed as soon as they
become unused. For example, if an application task creates a graphics window and then terminates, the
window automatically disappears the instant the last reference to it has gone away.

Limbo programs are compiled into byte- codesrepresenting instructions for a virtual machine called Dis.
The architecture of the arithmetic part of Dis is a simple 3- addressmachine, supplemented with a few spe-
cialized operations for handling some of the higher- leveldata types like arrays and strings. Garbage collec-
tion is handled below the level of the machine language; the scheduling of tasks is similarly hidden. When
loaded into memory for execution, the byte- codesare expanded into a format more efficient for execution;
there is also an optional on- the- flycompiler that turns a Dis instruction stream into native machine instruc-
tions for the appropriate real hardware. This can be done efficiently because Dis instructions match well
with the instruction- setarchitecture of today’s machines. The resulting code executes at a speed approach-
ing that of compiled C.

Underlying Dis is the Inferno kernel, which contains the interpreter and on- the- flrompiler as well as mem-
ory management, scheduling, device drivers, protocol stacks, and the like. The kernel also contains the core
of the file system (the name evaluator and the code that turns file system operations into remote procedure
calls over communications links) as well as the small file systems implemented internally.

Finally, the Inferno virtual machine implements several standard modules internally. These include Sys,
which provides system calls and a small library of useful routines (e.g. creation of network connections,
string manipulations). Module Dr awis a basic graphics library that handles raster graphics, fonts, and win-
dows. Module Pr ef ab builds on Dr aw to provide structured complexes containing images and text inside
of windows; these elements may be scrolled, selected, and changed by the methods of Pr ef ab. Module Tk
is an all- newimplementation of the Tk graphics toolkit [18], with a Limbo interface. A Mat h module encap-
sulates the procedures for numerical programming.

The Environment of the Inferno System

Inferno creates a standard environment for applications. Identical application programs can run under any
instance of this environment, even in distributed fashion, and see the same resources. Depending on the
environment in which Inferno itself is implemented, there are several versions of the Inferno kernel,
Dis/Limbo interpreter, and device driver set.

When running as the native operating system, the kernel includes all the low- levelglue (interrupt handlers,
graphics and other device drivers) needed to implement the abstractions presented to applications. For a
hosted system, for example under Unix, Windows NT or Windows 95, Inferno runs as a set of ordinary pro-
cesses. Instead of mapping its device- controlfunctionality to real hardware, it adapts to the resources pro-
vided by the operating system under which it runs. For example, under Unix, the graphics library might be
implemented using the X window system and the networking using the socket interface; under Windows, it
uses the native Windows graphics and Winsock calls.

Inferno is, to the extent possible, written in standard C and most of its components are independent of the
many operating systems that can host it.

Security in Inferno
Inferno provides security of communication, resource control, and system integrity.

Each external communication channel may be transmitted in the clear, accompanied by message digests to
prevent corruption, or encrypted to prevent corruption and interception. Once communication is set up,
the encryption is transparent to the application. Key exchange is provided through standard public- key
mechanisms; after key exchange, message digesting and line encryption likewise use standard symmetric
mechanisms.

Inferno is secure against erroneous or malicious applications, and encourages safe collaboration between
mutually suspicious service providers and clients. The resources available to applications appear exclu-
sively in the name space of the application, and standard protection modes are available. This applies to
data, to communication resources, and to the executable modules that constitute the applications. Security-
sensitive resources of the system are accessible only by calling the modules that provide them; in particular,

adding new files and servers to the name space is controlled and is an authenticated operation. For exam-
ple, if the network resources are removed from an application’s name space, then it is impossible for it to
establish new network connections.

Object modules may be signed by trusted authorities who guarantee their validity and behavior, and these
signatures may be checked by the system the modules are accessed.

Although Inferno provides a rich variety of authentication and security mechanisms, as detailed below, few
application programs need to be aware of them or explicitly include coding to make use of them. Most
often, access to resources across a secure communications link is arranged in advance by the larger system
in which the application operates. For example, when a client system uses a server system and connection
authentication or link encryption is appropriate, the server resources will most naturally be supplied as a
part of the application’s name space. The communications channel that carries the Styx protocol can be set
to authenticate or encrypt; thereafter, all use of the resource is automatically protected.

Security mechanisms

Authentication and digital signatures are performed using public key cryptography. Public keys are certi-
fied by Inferno- basedor other certifying authorities that sign the public keys with their own private key.

Inferno uses encryption for:

. mutual authentication of communicating parties;
. authentication of messages between these parties; and
. encryption of messages between these parties.

The encryption algorithms provided by Inferno include the SHA, MD4, and MD?5 secure hashes; Elgamal
public key signatures and signature verification [4]; RC4 encryption; DES encryption; and public key
exchange based on the Diffie- Hellmanscheme. The public key signatures use keys with moduli up to 4096
bits, 512 bits by default.

There is no generally accepted national or international authority for storing or generating public or private
encryption keys. Thus Inferno includes tools for using or implementing a trusted authority, but it does not
itself provide the authority, which is an administrative function. Thus an organization using Inferno (or
any other security and key- distributionscheme) must design its system to suit its own needs, and in partic-
ular decide whom to trust as a Certifying Authority (CA). However, the Inferno design is sufficiently flexi-
ble and modular to accommodate the protocols likely to be attractive in practice.

The certifying authority that signs a user’s public key determines the size of the key and the public key algo-
rithm used. Tools provided with Inferno use these signatures for authentication. Library interfaces are pro-
vided for Limbo programs to sign and verify signatures.

Generally authentication is performed using public key cryptography. Parties register by having their pub-
lic keys signed by the certifying authority (CA). The signature covers a secure hash (SHA, MD4, or MD5) of
the name of the party, his public key, and an expiration time. The signature, which contains the name of the
signer, along with the signed information, is termed a certificate.

When parties communicate, they use the Station to Station protocol[5] to establish the identities of the two
parties and to create a mutually known secret. This STS protocol uses the Diffie- Hellmanalgorithm [6] to
create this shared secret. The protocol is protected against replay attacks by choosing new random parame-
ters for each conversation. It is secured against ‘man in the middle’ attacks by having the parties exchange
certificates and then digitally signing key parts of the protocol. To masquerade as another party an
attacker would have to be able to forge that party’s signature.

Line Security

A network conversation can be secured against modification alone or against both modification and snoop-
ing. To secure against modification, Inferno can append a secure MD5 or SHA hash (called a digest),

hash(secret, message, nessageid)

to each message. Messageid is a 32 bit number that starts at 0 and is incremented by one for each message
sent. Thus messages can be neither changed, removed, reordered or inserted into the stream without know-
ing the secret or breaking the secure hash algorithm.

To secure against snooping, Inferno supports encryption of the complete conversation using either RC4 or
DES with either DES chain block coding (DESCBC) and electronic code book (DESECB).

Inferno uses the same encapsulation format as Netscape’s Secure Sockets Layer [7]. It is possible to encap-
sulate a message stream in multiple encapsulations to provide varying degrees of security.

Random Numbers

The strength of cryptographic algorithms depends in part on strength of the random numbers used for
choosing keys, Diffie- Hellmanparameters, initialization vectors, etc. Inferno achieves this in two steps: a
slow (100 to 200 bit per second) random bit stream comes from sampling the low order bits of a free run-
ning counter whenever a clock ticks. The clock must be unsynchronized, or at least poorly synchronized,
with the counter. This generator is then used to alter the state of a faster pseudo- randomnumber generator.
Both the slow and fast generators were tested on a number of architectures using self correlation, random
walk, and repeatability tests.

Introduction to Limbo

Limbo is the application programming language for the Inferno operating system. Although Limbo looks
syntactically like C, it has a number of features that make it easier to use, safer, and more suited to the het-
erogeneous, networked Inferno environment: a rich set of basic types, strong typing, garbage collection,
concurrency, communications, and modules. Limbo may be interpreted or compiled ‘just in time’ for effi-
cient, portable execution.

This paper introduces the language by studying an example of a complete, useful Limbo program. The pro-
gram illustrates general programming as well as aspects of concurrency, graphics, module loading, and
other features of Limbo and Inferno.

The problem

Our example program is a stripped- downversion of the Inferno[14] program view , which displays graphi-
cal image files on the screen, one per window. This version sacrifices some functionality, generality, and
error- checkingbut performs the basic job. The files may be in either GIF[12, 13] or JPEG[19] format and
must be converted before display, or they may already be in the Inferno standard format that needs no con-
version. View ‘sniffs’ each file to determine what processing it requires, maps the colors if necessary, cre-
ates a new window, and copies the converted image to it. Each window is given a title bar across the top to
identify it and hold the buttons to move and delete the window.

The Source

Here is the complete Limbo source for our version of view , annotated with line numbers for easy reference
(Limbo, of course, does not use line numbers). Subsequent sections explain the workings of the program.
Although the program is too large to absorb as a first example without some assistance, it’s worth skim-
ming before moving to the next section, to get an idea of the style of the language. Control syntax derives
from C[11], while declaration syntax comes from the Pascal family of languages[17]. Limbo borrows fea-
tures from a number of languages (e.g., tuples on lines 45 and 48) and introduces a few new ones (e.g.
explicit module loading on lines 90 and 92).

1 implement View;

2 include "sys.m";
3 sys: Sys;
4 include "draw.m";
5 draw: Draw;
6 Rect, Display, Image: import draw;
7 include "bufio.m";
8 include "imagefile.m";
9 include "tk.m";
10 tk: Tk;
11 include "wmlib.m";
12 wmlib: Wmlib;
13 include "string.m";
14 str: String;
15 View: module
16 {
17 init: fn(ctxt: ref Draw->Context,

argv: list of string);

19

20
21
22
23
24
25
26
27

28
29
30

31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48

49
50
51
52

53
54
55

56
57
58
59

60
61

init(ctxt: ref Draw->Context,

{

}

argv: list of string)

sys = load Sys Sys->PATH;
draw =load Draw Draw->PATH;
tk = load Tk Tk->PATH,;

wmlib = load Wmlib Wmlib->PATH;
str = load String String->PATH;
wmlib->init();

imageremap := load Imageremap

Imageremap->PATH,;

bufio := load Bufio Bufio->PATH,;
argv = tl argv;
if(argv = nil
&& str->prefix("-x ", hd argv))
argv = tl argv;

viewer :=0;
while(argv != nil){
file := hd argy;
argv = tl argv;
im := ctxt.display.open(file);
if(im == nil){
idec := filetype(file);
if(idec == nil)
continue;

fd := bufio->open(file,
Bufio->OREAD);
if(fd == nil)
continue;
idec->init(bufio);
(ri, err) := idec->read(fd);
if(ri == nil)
continue;
(im, err) = imageremap->remap(
ri, ctxt.display, 1);

if(im == nil)
continue;
}
spawn view(ctxt, im, file,
viewer++);

}

view(ctxt: ref Draw->Context,

im: ref Image, file: string,
viewer: int)

corner := string(25+20*(viewer%?5));
(nil, file) = str->splitr(file, "/");
(t, menubut) := wmlib->titlebar(ctxt.screen,
" -x "+corner+" -y "+corner+
" -bd 2 -relief raised",
"View: "+file, Wmlib->Hide);
event := chan of string;
tk->namechan(t, event, "event");

62 tk->cnd(t, "frame .im-height " +
string imr.dy() +
" -width " +
string imr.dx());
63 tk->cnd(t, "bind . <Configure> "+
"{send event resize}");
64 tk->cnd(t, "bind . <Map> "+
"{send event resize}");
65 tk->cnmd(t, "pack .im-side bottoni+
" -fill both -expand 1");
66 tk->cnmd(t, "update");
67 t.image.draw(posn(t), im ctxt.display.ones, imr.mn);
68 for(;;) alt{
69 nmenu : = <-menubut =>
70 if(menu == "exit")
71 return;
72 wmib->titlectl(t, nenu);
73 <-event =>
74 t.inmage.drawposn(t), im
ctxt.display.ones, imr.mn);
75 }
76}
77 posn(t: ref Tk->Toplevel): Rect
78 {
79 mnx :=int tk->cmd(t,
".imcget -actx");
80 mny :=int tk->cnd(t,
".imcget -acty");
81 maxx = mnx + int tk->cnd(t,
".imcget -actwidth");
82 maxy := mny + int tk->cmd(t,
".imcget -actheight");
83 return ((mnx, mny), (mxx, maxy));
84 }
85 filetype(file: string): Rimagefile
86
87 if(len file>4
&& file[len file-4:]==".gif")
88 r := load Rimagefile
Rl nmagefi | e- >READA FPATH,;
89 if(len file>4
&& file[len file-4:]1==".jpg")
90 r = load Rl magefile
Rl magef i | e- >READJPGPATH;
91 return r;
92 }
Modules

Limbo programs are composed of modules that are loaded and linked at run- time. Each Limbo source file
is the implementation of a single module; here line 1 states this file implements a module called Vi ew,
whose declaration appears in the nbdul e declaration on lines 15- 18. The declaration states that the module
has one publicly visible element, the function i ni t. Other functions and variables defined in the file will be
compiled into the module but only accessible internally.

The function i ni t has a type signature (argument and return types) that makes it callable from the Inferno
shell, a convention not made explicit here. The type of i ni t allows Vi ew to be invoked by typing, for
example,

view *.jpg

at the Inferno command prompt to view all the JPEG files in a directory. This interface is all that is required
for the module to be callable from the shell; all programs are constructed from modules, and some modules
are directly callable by the shell because of their type. In fact the shell invokes Vi ewby loading it and call-

ing i ni t, not for example through the services of a system exec function as in a traditional operating sys-
tem.

Not all modules, of course, implement shell commands; modules are also used to construct libraries, ser-
vices, and other program components. The module Vi ew uses the services of other modules for I/0O,
graphics, file format conversion, and string processing. These modules are identified on lines 2- 14. Each
module’s interface is stored in a public ‘include file’ that holds a definition of a module much like lines
15- 180f the Vi ewprogram. For example, here is an excerpt from the include file Sys. m

Sys: nodul e

{

PATH: con "$Sys";

FD: adt # File descriptor

{

fd: int;

b

OREAD: con O;

OMNRITE: con 1;

ORDVR: con 2,

open: fn(s: string, node: int): ref FD

print: fn(s: string, *): int;

read: fn(fd: ref FD, buf: array of byte, n: int): int;

wite: fn(fd: ref FD, buf: array of byte, n: int): int;
i

This defines a module type, called Sys, that has functions with familiar names like open and pri nt, con-
stants like OREAD to specify the mode for opening a file, an aggregate type (adt) called FD, returned by
open, and a constant string called PATH.

After including the definition of each module, Vi ew declares variables to access the module. Line 3, for
example, declares the variable sys to have type Sys; it will be used to hold a reference to the implementa-
tion of the module. Line 6 imports a number of types from the dr aw (graphics) module to simplify their
use; this line states that the implementation of these types is by default to be that provided by the module
referenced by the variable dr aw. Without such an i nmport statement, calls to methods of these types would
require explicit mention of the module providing the implementation.

Unlike most module languages, which resolve unbound references to modules automatically, Limbo
requires explicit ‘loading” of module implementations. Although this requires more bookkeeping, it allows
a program to have fine control over the loading (and unloading) of modules, an important property in the
small- memory systems in which Inferno is intended to run. Also, it allows easy garbage collection of
unused modules and allows multiple implementations to serve a single interface, a style of programming
we will exploit in Vi ew.

Declaring a module variable such as sys is not sufficient to access a module; an implementation must also
be loaded and bound to the variable. Lines 21- 25load the implementations of the standard modules used
by Vi ew. The | oad operator, for example

sys = |l oad Sys Sys->PATH,

takes a type (Sys), the file name of the implementation (Sys- >PATH), and loads it into memory. If the
implementation matches the specified type, a reference to the implementation is returned and stored in the
variable (sys). If not, the constant ni | will be returned to indicate an error. Conventionally, the PATH con-
stant defined by a module names the default implementation. Because Sys is a built- inmodule provided
by the system, it has a special form of name; other modules” PATH variables name files containing actual
code. For example, Wrl i b- >PATHis "/ di s/l ib/wnrib.dis". Note, though, that the name of the imple-
mentation of the module in a | oad statement can be any string.

Line 26 initializes the wnl i b module by invoking its i ni t function (unrelated to the i ni t of Vi ew). Note
the use of the - > operator to access the member function of the module. The next two lines load modules,
but add a new wrinkle: they also declare and initialize the module variables storing the reference. Limbo
declarations have the general form

var: type = value;

-10-

If the type is missing, it is taken to be the type of the value, so for example,

bufio := |l oad Bufio Bufio->PATH,

on line 28 declares a variable of type Buf i 0 and initializes it to the result of the | oad expression.

The main loop

The i ni t function takes two parameters, a graphics context, ct xt , for the program and a list of command-
line argument strings, ar gv. Argvisali st of string; strings are a built- intype in Limbo and lists are a
built- inform of constructor. Lists have several operations defined: hd (head) returns the first element in the
list, t | (tail) the remainder after the head, and | en (length) the number of elements in the list.

Line 29 throws away the first element of ar gv, which is conventionally the name of the program being
invoked by the shell, and lines 30- 31lignore a geometry argument passed by the window system. The loop
from lines 33 to 53 processes each file named in the remaining arguments; when ar gv is a ni | list, the loop
is complete. Line 34 picks off the next file name and line 35 updates the list.

Line 36 is the first method call we have seen:
im:= ctxt.display.open(file);

The parameter ct Xt is an adt that contains all the relevant information for the program to access its graph-
ics environment. One of its elements, called di spl ay, represents the connection to the frame buffer on
which the program may write. The adt di spl ay (whose type is imported on line 6) has a member func-
tion open that reads a named image file into the memory associated with the frame buffer, returning a ref-
erence to the new image. (In X[20] terminology, di spl ay represents a connection to the server and open
reads a pixmap from a file and instantiates it on that server.)

The di spl ay. open method succeeds only if the file exists and is in the standard Inferno image format. If
it fails, it will return ni | and lines 38- 50will attempt to convert the file into the right form.

Decoding the file

Line 38 calls fi | et ype to determine what format the file has. The simple version here, on lines 85- 92,just
looks at the file suffix to determine the type. A realistic implementation would work harder, but even this
version illustrates the utility of program- controlledloading of modules.

The decoding interface for an image file format is specified by the module type RI magefi | e. However,
unlike the other modules we have looked at, Rl magef i | e has a number of implementations. If the file is a
GIF file, fi | et ype returns the implementation of Rl magefi |l e that decodes GIFs; if it is a JPEG file,
filetype returns an implementation that decodes JPEGs. In either case, the r ead method has the same
interface. Since reference variables like r are implicitly initialized to ni | , that is what fi | et ype will
return if it does not recognize the image format.

Thus, fi | et ype accepts a file name and returns the implementation of a module to decode it.

A couple of other points about fi | et ype. First, the expression fil e[l en file-4:] is a slice of the
string fi | e; it creates a string holding the last four characters of the file name. The colon separates the
starting and ending indices of the slice; the missing second index defaults to the end of the string. As with
lists, | en returns the number of characters (not bytes; Limbo uses Unicode[21] throughout) in the string.

Second, and more important, this version of fi | et ype loads the decoder module anew every time it is
called, which is clearly inefficient. It’s easy to do better, though: just store the module in a global, as in this
fragment:

readj pg: Rl magefil e;

filetype(...)...
if(isjpg()){
if(readjpg == nil)
readj pg = | oad Rl nagefile

Rl nagefi | e- >READJPGPATH,
return readj pg;

- 11 -

The program can form its own policies on loading and unloading modules based on time/space or other
tradeoffs; the system does not impose its own.

Returning to the main loop, after the type of the file has been discovered, line 41 opens the file for I/O using
the buffered I/O package. Line 44 calls the i ni t function of the decoder module, passing it the instance of
the buffered I/O module being used (if we were caching decoder modules, this call to i ni t would be done
only when the decoder is first loaded.) Finally, the Limbo- characteristicline 45 reads in the file:

(ri, err) := idec->read(fd);

The r ead method of the decoder does the hard job of cracking the image format, which is beyond the scope
of this paper. The result is a tuple: a pair of values. The first element of the pair is the image, while the sec-
ond is an error string. If all goes well, the err will be ni | ; if there is a problem, however, err may be
printed by the application to report what went wrong. The interesting property of this style of error report-
ing, common to Limbo programs, is that an error can be returned even if the decoding was successful (that
is, even if ri is non- ni |). For example, the error may be recoverable, in which case it is worth returning
the result but also worth reporting that an error did occur, leaving the application to decide whether to dis-
play the error or ignore it. (Vi ew ignores it, for brevity.)

In a similar manner, line 48 remaps the colors from the incoming colormap associated with the file to the
standard Inferno color map. The result is an image ready to be displayed.

Creating a process

By line 52 in the main loop, we have an image ready in the variable i mand use the Limbo primitive spawn
to create a new process to display that image on the screen. Spawn operates on a function call, creating a
new process to execute that function. The process doing the spawning, here the main loop, continues
immediately, while the new process begins execution in the specified function with the specified parame-
ters. Thus line 52 begins a new process in the function vi ew with arguments the graphics context, the
image to display, the file name, and a unique identification number used in placing the windows.

The new process shares with the calling process all variables except the stack. Shared memory can therefore
be used to communicate between them; for synchronization, a more sophisticated mechanism is needed, a
subject we will cover in the section on communications.

Starting Tk

The function vi ew uses the Inferno Tk graphics toolkit (a re- implementationfor Limbo of Ousterhout’s
Tcl/ Tk toolkit [18]) to place the image on the screen in a new window. Line 57 computes the position of the
corner of the window, using the viewer number to stagger the positions of successive windows. The
string keyword is a conversion; in this example the conversion does an automatic translation from an
integer expression into a decimal representation of the number. Thus cor ner is a string variable, a form
more useful in the calls to the Tk library.

The Inferno Tk implementation uses Limbo as its controlling language. Rather than building a rich proce-
dural interface, the interface passes strings to a generic Tk command processor, which returns strings as
results. This is similar to the use Tk within Tcl, but with most of the control flow, arithmetic, and so on
written in Limbo.

A good introduction to the style is the function posn on lines 77- 84. The calls to t k- >crd evaluate the tex-
tual command in the context defined by the Tk- >Topl evel variable t (created on line 57 and passed to
posn); the result is a decimal integer, converted to binary by the explicit i nt conversion. On line 83, all the
coordinates of the rectangle are known, and the function returns a nested tuple defining the rectangular
position of the . i mcomponent of the Toplevel. This tuple is automatically promoted to the Rect type by
the return statement.

Back in function vi ew, line 58 uses a function from the higher- levelSt ri ng module to strip off the base-
name of the file name, for use in the banner of the window. Note that one component of the tuple is nil; the
value of this component is discarded. Line 58 calls the window manager function wr i b->ti t| ebar to
establish a title bar on the window The arguments are ct Xt . scr een, a data structure representing the win-
dow stack on the frame buffer, a string specifying the size and properties of the new window, the window’s
label, and the set of control buttons required. The + operator on strings performs concatenation. The win-
dow is labelled " Vi ew' and the file basename, with a control button to hide the window. Titlebars always
include a control button to dismiss the window. (The size and properties argument is more commonly nil
or the empty string, leaving the choice of position and style to the window manager.) The first value in the

- 12 -

tuple returned by wil i b- >t i t | ebar is a reference to a ‘top- level'widget-a window-upon which the pro-
gram will assemble its display.

Communications

The second value in the tuple returned from wm i b->ti t| ebar is a built- inLimbo type called a channel
(chan is the keyword). A channel is a communications mechanism in the manner of Hoare’s CSP[15]. Two
processes that wish to communicate do so using a shared channel; data sent on the channel by one process
may be received by another process. The communication is synchronous: both processes must be ready to
communicate before the data changes hands, and if one is not ready the other blocks until it is. Channels
are a feature of the Limbo language: they have a declared type (chan of i nt, chan of |ist of string,
etc.) and only data of the correct type may be sent. There is no restriction on what may be sent; one may
even send a channel on a channel. Channels therefore serve both to communicate and to synchronize.

Channels are used throughout Inferno to provide interfaces to system functions. The threading and com-
munications primitives in Limbo are not designed to implement efficient multicomputer algorithms, but
rather to provide an elegant way to build active interfaces to devices and other programs.

One example is the nenubut channel returned by wrl i b->ti t| ebar, a channel of textual commands sent
by the window manager. The expression on line 69,

menu : = <-nmenubut

receives the next message on the channel and assigns it to the variable menu. The communications opera-
tor, <-, receives a datum when prefixed to channel and transmits a datum when combined with an assign-
ment operator (e.g. channel <-=2). This use of menubut appears inside an al t (alternation) statement, a
construct we’ll discuss later.

Lines 60 and 61 create and register a new channel, event , to be used by the Tk module to report user inter-
face events. Lines 62- 66use simple Tk operations to make the window in which the image may be drawn.
Lines 63 and 64 bind events within this window to messages to be sent on the channel event . For example,
line 63 defines that when the configuration of the window is changed, presumably by actions of the window
manager, the string "resi ze" is to be transmitted on event for interpretation by the application. This
translation of events into messages on explicit channels is fundamental to the Limbo style of programming.

Displaying the image
The payoff occurs on line 67, which steps outside the Tk model to draw the image i mdirectly on the win-
dow:

t.image.draw(posn(t), im ctxt.display.ones, imr.mn);

Posn calculates where on the screen the image is to go. The dr aw method is the fundamental graphics
operation in Inferno, whose design is outside our scope here. In this statement, it just copies the pixels from
i mto the window’s own image, t . i mage; the argument ct xt . di spl ay. ones is a mask that selects every
pixel.

Multi-way communications

Once the image is on the screen, vi ewwaits for any changes in the status of the window. Two things may
happen: either the buttons on the title bar may be used, in which case a message will appear on nmenubut ,
or a configuration or mapping operation will apply to the window, in which case a message will appear on
event.

The Limbo al t statement provides control when more than one communication may proceed. Analogous
to a case statement, the al t evaluates a set of expressions and executes the statements associated with the
correct expression. Unlike a case, though, the expressions in an al t must each be a communication, and
the al t will execute the statements associated with the communication that can first proceed. If none can
proceed, the al t waits until one can; if more than one can proceed, it chooses one randomly.

Thus the loop on lines 68- 75processes messages received by the two classes of actions. When the window is
moved or resized, line 73 will receive a "r esi ze" message due to the bindings on lines 63 and 64. The
message is discarded but the action of receiving it triggers the repainting of the newly placed window on
line 74. Similarly, messages triggered by buttons on the title bar send a message on menubut , and the value
of that is examined to see if it is "exi t ", which should be handled locally, or anything else, which can be
passed on to the underlying library.

- 13-

Cleanup

If the exit button is pushed, line 71 will return from vi ew. Since vi ew was the top- levelfunction in this
process, the process will exit, freeing all its resources. All memory, open file descriptors, windows, and
other resources held by the process will be garbage collected when the return executes.

The Limbo garbage collector [16] uses a hybrid scheme that combines reference counting to reclaim memory
the instant its last reference disappears with a real- timesweeping algorithm that runs as an idle- timepro-
cess to reclaim unreferenced circular structures. The instant- freeproperty means that system resources like
file descriptors and windows can be tied to the collector for recovery as soon as they become unused; there
is no pause until a sweeper discovers it. This property allows Inferno to run in smaller memory arenas than
are required for efficient mark- and- sweepalgorithms, as well as providing an extra level of programmer
convenience.

Summary

Inferno supplies a rich environment for constructing distributed applications that are portable-in fact
identical-even when running on widely divergent underlying hardware. Its unique advantage over other
solutions is that it encompasses not only a virtual machine, but also a complete virtual operating system
including network facilities.

Acknowledgment

The cryptographic elements of Inferno owe much to the cryptographic library of Lacy et al. [22].

References

1. R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and P. Winterbottom. “’Plan 9 from Bell
Labs”, J. Computing Systems 8:3, Summer 1995, pp. 221- 254.

2. S. Dorward, R. Pike, and P. Winterbottom. ““Programming in Limbo”’, IEEE Compcon 97 Proceedings, 1997.
J. K. Ousterhout. Tcl and the Tk Toolkit, Addison- Wesley, 1994.

-

T. Elgamal, ““A Public- Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms”, Advances in
Cryptography: Proceedings of CRYPTO 84, Springer Verlag, 1985, pp. 10- 18

B. Schneier, “Applied Cryptography”’, Wiley, 1996, p. 516
D. Stinson, “’Cryptography, Theory and Practice”’, CRC Press, 1996, p. 271
K. Hickman and T. Elgamal, ““The SSL Protocol (V3.0)”, IETF Internet-draft

® N o o

S. M. Bellovin and M. Merritt, “Encrypted Key Exchange: Password- Based Protocols Secure Against Dictionary
Attack”, Proceedings of the 1992 IEEE Computer Society Conference on Research in Security and Privacy, 1992, pp.
72- 84

9. M. Blaze, J. Feigenbaum, J. Lacy, “‘Decentralized Trust Management”, Proceedings 1996 IEEE Symposium on Security
and Privacy, May 1996

10. R. Rivest and B. Lampson, “SDSI - A Simple Distributed Security Architecture”, unpublished,
http://theory.lcs.mit.edu/ rivest/sdsi10.ps

11. American National Standard for Information Systems Programming Language C, American National Standards Institute,
X3.159- 1989.

12. GIF Graphics Interchange Format: A standard defining a mechanism for the storage and transmission of bitmap-based graph-
ics information, CompuServe Incorporated, Columbus, OH, 1987.

13. GIF Graphics Interchange Format: Version 89a, CompuServe Incorporated, Columbus, OH, 1990.
14. S. Dorward et al., “Inferno”’, IEEE Compcon 97 Proceedings, 1997.
15. C. A.R. Hoare, “Communicating Sequential Processes”. Comm. ACM 21:8, pp. 666- 677, 1978.

16. L. Huelsbergen, and P. Winterbottom, ““Very Concurrent Mark & Sweep Garbage Collection without Fine- Grain
Synchronization”, Submitted International Conference of Functional Programming, Amsterdam, 1997.

17. K.Jensen, and N. Wirth, PascalUser Manual and Report. Springer- Verlag, 1974.

18. John K. Ousterhout, Tc! and the Tk Toolkit, Addison- Wesley, 1994.

19. W. B. Pennebaker. and J. L. Mitchell, JPEG Still Image Data Compression, Van Nostrand Reinhold, New York, 1992.
20. R. W. Scheifler, J. Gettys, and R. Newman, X Window System, Digital Press, 1988.

21. The Unicode Consortium, The Unicode Standard, Version 2.0, Addison Wesley, 1996.

- 14 -

22,].B. Lacy, D. P. Mitchell, and W. M. Schell, “CryptoLib: Cryptography in Software,” UNIX Security Symposium IV
Proceedings, USENIX Association, 1993 pp. 1- 17.

