ref: fd1fc693aa0fc7c4f0d7e0d8868541a4bc16ee4a
parent: 2a7a9fa08535a6493f5b743776610c2b46ea7523
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Mon Apr 1 11:22:00 EDT 2019
adaptation flag to avoid training the sample rate network
--- a/dnn/lpcnet.py
+++ b/dnn/lpcnet.py
@@ -113,7 +113,7 @@
'seed': self.seed
}
-def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, training=False, use_gpu=True):
+def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, training=False, use_gpu=True, adaptation=False):
pcm = Input(shape=(None, 3))
feat = Input(shape=(None, nb_used_features))
pitch = Input(shape=(None, 1))
@@ -153,10 +153,11 @@
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
ulaw_prob = md(gru_out2)
- rnn.trainable=False
- rnn2.trainable=False
- md.trainable=False
- embed.Trainable=False
+ if adaptation:
+ rnn.trainable=False
+ rnn2.trainable=False
+ md.trainable=False
+ embed.Trainable=False
model = Model([pcm, feat, pitch], ulaw_prob)
model.rnn_units1 = rnn_units1
--
⑨