shithub: opus

Download patch

ref: d54b9fb49af339c8ee72a8f54ee7e5beadbd724f
parent: fb570ed8bb2648e07e84faf40f30d93b7a0311d7
author: Jean-Marc Valin <jmvalin@amazon.com>
date: Tue Sep 5 08:16:45 EDT 2023

Adds skip connections

--- a/dnn/torch/fargan/fargan.py
+++ b/dnn/torch/fargan/fargan.py
@@ -140,7 +140,7 @@
         
         print("has_gain:", self.has_gain)
         print("passthrough_size:", self.passthrough_size)
-        self.sig_dense1 = nn.Linear(4*self.subframe_size+self.passthrough_size+self.cond_size+4, self.cond_size, bias=False)
+        self.sig_dense1 = nn.Linear(4*self.subframe_size+self.passthrough_size+self.cond_size, self.cond_size, bias=False)
         self.sig_dense2 = nn.Linear(self.cond_size, self.cond_size, bias=False)
         self.gru1 = nn.GRUCell(self.cond_size, self.cond_size, bias=False)
         self.gru2 = nn.GRUCell(self.cond_size, self.cond_size, bias=False)
@@ -151,11 +151,11 @@
         self.gru1_glu = GLU(self.cond_size)
         self.gru2_glu = GLU(self.cond_size)
         self.gru3_glu = GLU(self.cond_size)
-        self.ptaps_dense = nn.Linear(self.cond_size, 5)
+        self.ptaps_dense = nn.Linear(4*self.cond_size, 5)
         
-        self.sig_dense_out = nn.Linear(self.cond_size, self.subframe_size+self.passthrough_size, bias=False)
+        self.sig_dense_out = nn.Linear(4*self.cond_size, self.subframe_size+self.passthrough_size, bias=False)
         if self.has_gain:
-            self.gain_dense_out = nn.Linear(self.cond_size, 1)
+            self.gain_dense_out = nn.Linear(4*self.cond_size, 1)
 
 
         self.apply(init_weights)
@@ -173,30 +173,35 @@
         pred = pred/(1e-5+gain)
 
         prev = prev/(1e-5+gain)
-        #prev = prev*0
         dump_signal(prev, 'pitch_exc.f32')
         dump_signal(exc_mem, 'exc_mem.f32')
 
         passthrough = states[3]
-        tmp = torch.cat((cond, pred, prev, passthrough, phase), 1)
+        tmp = torch.cat((cond, pred[:,2:-2], prev, passthrough, phase), 1)
 
         tmp = self.dense1_glu(torch.tanh(self.sig_dense1(tmp)))
-        tmp = self.dense2_glu(torch.tanh(self.sig_dense2(tmp)))
-        gru1_state = self.gru1(tmp, states[0])
-        gru2_state = self.gru2(self.gru1_glu(gru1_state), states[1])
-        gru3_state = self.gru3(self.gru2_glu(gru2_state), states[2])
+        dense2_out = self.dense2_glu(torch.tanh(self.sig_dense2(tmp)))
+        gru1_state = self.gru1(dense2_out, states[0])
+        gru1_out = self.gru1_glu(gru1_state)
+        #gru1_out = torch.cat([gru1_out, fpitch], 1)
+        gru2_state = self.gru2(gru1_out, states[1])
+        gru2_out = self.gru2_glu(gru2_state)
+        #gru2_out = torch.cat([gru2_out, fpitch], 1)
+        gru3_state = self.gru3(gru2_out, states[2])
         gru3_out = self.gru3_glu(gru3_state)
+        gru3_out = torch.cat([gru1_out, gru2_out, gru3_out, dense2_out], 1)
         sig_out = torch.tanh(self.sig_dense_out(gru3_out))
         if self.passthrough_size != 0:
             passthrough = sig_out[:,self.subframe_size:]
             sig_out = sig_out[:,:self.subframe_size]
         dump_signal(sig_out, 'exc_out.f32')
+        taps = self.ptaps_dense(gru3_out)
+        taps = .2*taps + torch.exp(taps)
+        taps = taps / (1e-2 + torch.sum(torch.abs(taps), dim=-1, keepdim=True))
+        dump_signal(taps, 'taps.f32')
+        fpitch = taps[:,0:1]*pred[:,:-4] + taps[:,1:2]*pred[:,1:-3] + taps[:,2:3]*pred[:,2:-2] + taps[:,3:4]*pred[:,3:-1] + taps[:,4:]*pred[:,4:]
+
         if self.has_gain:
-            taps = self.ptaps_dense(gru3_out)
-            taps = .2*taps + torch.exp(taps)
-            taps = taps / (1e-2 + torch.sum(torch.abs(taps), dim=-1, keepdim=True))
-            dump_signal(taps, 'taps.f32')
-            fpitch = taps[:,0:1]*pred[:,:-4] + taps[:,1:2]*pred[:,1:-3] + taps[:,2:3]*pred[:,2:-2] + taps[:,3:4]*pred[:,3:-1] + taps[:,4:]*pred[:,4:]
             pitch_gain = torch.exp(self.gain_dense_out(gru3_out))
             dump_signal(pitch_gain, 'pgain.f32')
             sig_out = (sig_out + pitch_gain*fpitch) * gain
--