ref: cc285186993a66e9886957b2b5c106ec56c9949e
parent: 8e405b44e04dbd86b1349836ad2fcefbb56cdfed
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Sat Dec 19 14:25:59 EST 2020
wip 8x4 sparseness
--- a/dnn/training_tf2/dump_lpcnet.py
+++ b/dnn/training_tf2/dump_lpcnet.py
@@ -66,15 +66,17 @@
A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
printVector(f, diag, name + '_diag')
idx = np.zeros((0,), dtype='int')
- for i in range(3*N//16):
+ for i in range(3*N//8):
pos = idx.shape[0]
idx = np.append(idx, -1)
nb_nonzero = 0
- for j in range(N):
- if np.sum(np.abs(A[j, i*16:(i+1)*16])) > 1e-10:
+ for j in range(N//4):
+ block = A[j*4:(j+1)*4, i*8:(i+1)*8]
+ if np.sum(np.abs(block)) > 1e-10:
nb_nonzero = nb_nonzero + 1
idx = np.append(idx, j)
- W = np.concatenate([W, A[j, i*16:(i+1)*16]])
+ vblock = block.transpose((1,0)).reshape((-1,))
+ W = np.concatenate([W, vblock])
idx[pos] = nb_nonzero
printVector(f, W, name)
#idx = np.tile(np.concatenate([np.array([N]), np.arange(N)]), 3*N//16)
--- a/dnn/training_tf2/lpcnet.py
+++ b/dnn/training_tf2/lpcnet.py
@@ -74,12 +74,14 @@
A = p[:, k*N:(k+1)*N]
A = A - np.diag(np.diag(A))
#A = np.transpose(A, (1, 0))
- L=np.reshape(A, (N, N//16, 16))
+ L=np.reshape(A, (N//4, 4, N//8, 8))
S=np.sum(L*L, axis=-1)
+ S=np.sum(S, axis=1)
SS=np.sort(np.reshape(S, (-1,)))
- thresh = SS[round(N*N//16*(1-density))]
+ thresh = SS[round(N*N//32*(1-density))]
mask = (S>=thresh).astype('float32');
- mask = np.repeat(mask, 16, axis=1)
+ mask = np.repeat(mask, 4, axis=0)
+ mask = np.repeat(mask, 8, axis=1)
mask = np.minimum(1, mask + np.diag(np.ones((N,))))
#mask = np.transpose(mask, (1, 0))
p[:, k*N:(k+1)*N] = p[:, k*N:(k+1)*N]*mask
--- a/dnn/training_tf2/train_lpcnet.py
+++ b/dnn/training_tf2/train_lpcnet.py
@@ -102,7 +102,7 @@
del in_exc
# dump models to disk as we go
-checkpoint = ModelCheckpoint('lpcnet32c_384_10_G16_{epoch:02d}.h5')
+checkpoint = ModelCheckpoint('lpcnet32v_384_10_G16_{epoch:02d}.h5')
#Set this to True to adapt an existing model (e.g. on new data)
adaptation = False
@@ -120,5 +120,5 @@
decay = 5e-5
model.compile(optimizer=Adam(lr, decay=decay, beta_2=0.99), loss='sparse_categorical_crossentropy')
-model.save_weights('lpcnet32c_384_10_G16_00.h5');
+model.save_weights('lpcnet32v_384_10_G16_00.h5');
model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, sparsify])
--
⑨