ref: c1b357ed47656c69a33c336d4522fd051bcd229d
parent: 9629ea6a7015ea64f3c8d4d78cd2453bc8379795
author: Jan Buethe <jbuethe@amazon.de>
date: Tue Oct 18 15:30:23 EDT 2022
first attempt of C implementation of fec encoder (not tested yet due to NEON/DOT_PROD not being separable)
--- /dev/null
+++ b/dnn/nfec_enc.c
@@ -1,0 +1,56 @@
+#include "nfec_enc.h"
+#include "nnet.h"
+#include "nfec_enc_data.h"
+
+
+
+void nfec_encode_dframe(struct NFECEncState *enc_state, float *latents, float *initial_state, const float *input)
+{
+ float buffer[ENC_DENSE1_OUT_SIZE + ENC_DENSE2_OUT_SIZE + ENC_DENSE3_OUT_SIZE + ENC_DENSE4_OUT_SIZE + ENC_DENSE5_OUT_SIZE + ENC_DENSE6_OUT_SIZE + ENC_DENSE7_OUT_SIZE + ENC_DENSE8_OUT_SIZE + GDENSE1_OUT_SIZE];
+ int output_index = 0;
+ int input_index = 0;
+
+ /* run encoder stack and concatenate output in buffer*/
+ compute_dense(&enc_dense1, &buffer[output_index], input);
+ input_index = output_index;
+ output_index += ENC_DENSE1_OUT_SIZE;
+
+ compute_gru3(&enc_dense2, enc_state->dense2_state, &buffer[input_index]);
+ memcpy(&buffer[output_index], enc_state->dense2_state, ENC_DENSE2_OUT_SIZE * sizeof(float));
+ input_index = output_index;
+ output_index += ENC_DENSE2_OUT_SIZE;
+
+ compute_dense(&enc_dense3, &buffer[output_index], &buffer[input_index]);
+ input_index = output_index;
+ output_index += ENC_DENSE3_OUT_SIZE;
+
+ compute_gru3(&enc_dense4, enc_state->dense4_state, &buffer[input_index]);
+ memcpy(&buffer[output_index], enc_state->dense4_state, ENC_DENSE4_OUT_SIZE * sizeof(float));
+ input_index = output_index;
+ output_index += ENC_DENSE4_OUT_SIZE;
+
+ compute_dense(&enc_dense5, &buffer[output_index], &buffer[input_index]);
+ input_index = output_index;
+ output_index += ENC_DENSE5_OUT_SIZE;
+
+ compute_gru3(&enc_dense6, enc_state->dense6_state, &buffer[input_index]);
+ memcpy(&buffer[output_index], enc_state->dense6_state, ENC_DENSE6_OUT_SIZE * sizeof(float));
+ input_index = output_index;
+ output_index += ENC_DENSE6_OUT_SIZE;
+
+ compute_dense(&enc_dense7, &buffer[output_index], &buffer[input_index]);
+ input_index = output_index;
+ output_index += ENC_DENSE7_OUT_SIZE;
+
+ compute_dense(&enc_dense8, &buffer[output_index], &buffer[input_index]);
+ output_index += ENC_DENSE8_OUT_SIZE;
+
+ /* compute latents from concatenated input buffer */
+ compute_conv1d(&bits_dense, latents, enc_state->bits_dense_state, buffer);
+
+ /* next, calculate initial state */
+ compute_dense(&gdense1, &buffer[output_index], buffer);
+ input_index = output_index;
+ compute_dense(&gdense2, initial_state, &buffer[input_index]);
+
+}
\ No newline at end of file
--- /dev/null
+++ b/dnn/nfec_enc.h
@@ -1,0 +1,15 @@
+#ifndef _NFEC_ENC_H
+#define _NFEC_ENC_H
+
+#include "nfec_enc_data.h"
+
+struct NFECEncState{
+ float dense2_state[3 * ENC_DENSE2_STATE_SIZE];
+ float dense4_state[3 * ENC_DENSE4_STATE_SIZE];
+ float dense6_state[3 * ENC_DENSE6_STATE_SIZE];
+ float bits_dense_state[BITS_DENSE_STATE_SIZE];
+};
+
+void nfec_encode_dframe(struct NFECEncState *enc_state, float *latents, float *initial_state, const float *input);
+
+#endif
\ No newline at end of file
--- /dev/null
+++ b/dnn/nfec_enc_demo.c
@@ -1,0 +1,46 @@
+#include <stdlib.h>
+#include <stdio.h>
+
+#include "nfec_enc.h"
+
+void usage()
+{
+ printf("nfec_enc_demo <features>");
+ exit(1);
+}
+
+int main(int argc, char **argv)
+{
+ struct NFECEncState enc_state;
+ float feature_buffer[32];
+ float dframe[2 * 20];
+ float latents[80];
+ float initial_state[24];
+ int index = 0;
+ FILE *fid;
+
+ if (argc < 2)
+ {
+ usage();
+ }
+
+ fid = fopen(argv[1], "rb");
+ if (fid == NULL)
+ {
+ fprintf(stderr, "could not open feature file %s\n", argv[1]);
+ usage();
+ }
+
+ while (fread(feature_buffer, sizeof(float), 32, fid) == 32)
+ {
+ memcpy(dframe[16 * index++], feature_buffer, 16*sizeof(float));
+
+ if (index == 2)
+ {
+ nfec_encode_dframe(&enc_state, latents, initial_state, dframe);
+ index = 0;
+ }
+ }
+}
+
+/* gcc -DDISABLE_DOT_PROD nfec_enc_demo.c nfec_enc.c nnet.c nfec_enc_data.c -o nfec_enc_demo */
\ No newline at end of file
--- a/dnn/nnet.c
+++ b/dnn/nnet.c
@@ -38,6 +38,7 @@
#include "tansig_table.h"
#include "nnet.h"
#include "nnet_data.h"
+#include "nfec_enc_data.h"
#include "plc_data.h"
#ifdef NO_OPTIMIZATIONS
@@ -129,6 +130,11 @@
compute_activation(output, output, N, layer->activation);
}
+void compute_dense(const DenseLayer *layer, float *output, const float *input)
+{
+ return _lpcnet_compute_dense(layer, output, input);
+}
+
void compute_mdense(const MDenseLayer *layer, float *output, const float *input)
{
int i, c;
@@ -316,7 +322,7 @@
state[i] = h[i];
}
-#define MAX_RNN_NEURONS_ALL IMAX(MAX_RNN_NEURONS, PLC_MAX_RNN_NEURONS)
+#define MAX_RNN_NEURONS_ALL IMAX(IMAX(MAX_RNN_NEURONS, PLC_MAX_RNN_NEURONS), NFEC_ENC_MAX_RNN_NEURONS)
void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input)
{
@@ -442,12 +448,14 @@
state[i] = z[i]*state[i] + (1-z[i])*h[i];
}
+#define MAX_CONV_INPUTS_ALL IMAX(MAX_CONV_INPUTS, NFEC_ENC_MAX_CONV_INPUTS)
+
void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input)
{
int i;
int N, M;
int stride;
- float tmp[MAX_CONV_INPUTS];
+ float tmp[MAX_CONV_INPUTS_ALL];
celt_assert(input != output);
celt_assert(layer->nb_inputs*layer->kernel_size <= MAX_CONV_INPUTS);
RNN_COPY(tmp, mem, layer->nb_inputs*(layer->kernel_size-1));
--- a/dnn/nnet.h
+++ b/dnn/nnet.h
@@ -98,6 +98,8 @@
void _lpcnet_compute_dense(const DenseLayer *layer, float *output, const float *input);
+void compute_dense(const DenseLayer *layer, float *output, const float *input);
+
void compute_mdense(const MDenseLayer *layer, float *output, const float *input);
int sample_mdense(const MDenseLayer *layer, const float *input, const float *sampling_logit_table, kiss99_ctx *rng);
--- /dev/null
+++ b/dnn/training_tf2/dump_nfec_model.py
@@ -1,0 +1,123 @@
+import argparse
+import os
+
+parser = argparse.ArgumentParser()
+
+parser.add_argument('weights', metavar="<weight file>", type=str, help='model weight file in hdf5 format')
+parser.add_argument('--cond-size', type=int, help="conditioning size (default: 256)", default=256)
+parser.add_argument('--latent-dim', type=int, help="dimension of latent space (default: 80)", default=80)
+
+args = parser.parse_args()
+
+# now import the heavy stuff
+from keraslayerdump import dump_conv1d_layer, dump_dense_layer, dump_gru_layer
+from rdovae import new_rdovae_model
+
+def start_header(header_fid, header_name):
+ header_guard = "_" + os.path.basename(header_name)[:-2].upper() + "_H"
+ header_fid.write(
+f"""
+#ifndef {header_guard}
+#define {header_guard}
+
+#include "nnet.h"
+
+"""
+ )
+
+def finish_header(header_fid):
+ header_fid.write(
+"""
+#endif
+
+"""
+ )
+
+def start_source(source_fid, header_name, weight_file):
+ source_fid.write(
+f"""
+/* this source file was automatically generated from weight file {weight_file} */
+
+#include "{header_name}"
+
+"""
+ )
+
+def finish_source(source_fid):
+ pass
+
+
+if __name__ == "__main__":
+
+ model, encoder, decoder, qembedding = new_rdovae_model(20, args.latent_dim, cond_size=args.cond_size)
+ model.load_weights(args.weights)
+
+
+ # for the time being only dump encoder
+ encoder_dense_names = [
+ 'enc_dense1',
+ 'enc_dense3',
+ 'enc_dense5',
+ 'enc_dense7',
+ 'enc_dense8',
+ 'gdense1',
+ 'gdense2'
+ ]
+
+ encoder_gru_names = [
+ 'enc_dense2',
+ 'enc_dense4',
+ 'enc_dense6'
+ ]
+
+ encoder_conv1d_names = [
+ 'bits_dense'
+ ]
+
+ source_fid = open("nfec_enc_data.c", 'w')
+ header_fid = open("nfec_enc_data.h", 'w')
+
+ start_header(header_fid, "nfec_enc_data.h")
+ start_source(source_fid, "nfec_enc_data.h", os.path.basename(args.weights))
+
+ # dump GRUs
+ max_rnn_neurons = max(
+ [
+ dump_gru_layer(encoder.get_layer(name), source_fid, header_fid)
+ for name in encoder_gru_names
+ ]
+ )
+
+ # dump conv layers
+ max_conv_inputs = max(
+ [
+ dump_conv1d_layer(encoder.get_layer(name), source_fid, header_fid)
+ for name in encoder_conv1d_names
+ ]
+ )
+
+ # dump Dense layers
+ for name in encoder_dense_names:
+ layer = encoder.get_layer(name)
+ dump_dense_layer(layer, source_fid, header_fid)
+
+ # some global constants
+ header_fid.write(
+f"""
+#define NFEC_NUM_FEATURES 20
+
+#define NFEC_LATENT_DIM {args.latent_dim}
+
+#define NFEC_ENC_MAX_RNN_NEURONS {max_rnn_neurons}
+
+#define NFEC_ENC_MAX_CONV_INPUTS {max_conv_inputs}
+
+"""
+ )
+
+ finish_header(header_fid)
+ finish_source(source_fid)
+
+ header_fid.close()
+ source_fid.close()
+
--- /dev/null
+++ b/dnn/training_tf2/keraslayerdump.py
@@ -1,0 +1,160 @@
+""" helper functions for dumping some Keras layers to C files """
+
+import numpy as np
+
+
+def printVector(f, vector, name, dtype='float', dotp=False):
+ """ prints vector as one-dimensional C array """
+ if dotp:
+ vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
+ vector = vector.transpose((2, 0, 3, 1))
+ v = np.reshape(vector, (-1))
+ f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v)))
+ for i in range(0, len(v)):
+ f.write('{}'.format(v[i]))
+ if (i!=len(v)-1):
+ f.write(',')
+ else:
+ break;
+ if (i%8==7):
+ f.write("\n ")
+ else:
+ f.write(" ")
+ f.write('\n};\n\n')
+ return vector
+
+def printSparseVector(f, A, name, have_diag=True):
+ N = A.shape[0]
+ M = A.shape[1]
+ W = np.zeros((0,), dtype='int')
+ W0 = np.zeros((0,))
+ if have_diag:
+ diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
+ A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
+ A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
+ A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
+ printVector(f, diag, name + '_diag')
+ AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int')
+ idx = np.zeros((0,), dtype='int')
+ for i in range(M//8):
+ pos = idx.shape[0]
+ idx = np.append(idx, -1)
+ nb_nonzero = 0
+ for j in range(N//4):
+ block = A[j*4:(j+1)*4, i*8:(i+1)*8]
+ qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8]
+ if np.sum(np.abs(block)) > 1e-10:
+ nb_nonzero = nb_nonzero + 1
+ idx = np.append(idx, j*4)
+ vblock = qblock.transpose((1,0)).reshape((-1,))
+ W0 = np.concatenate([W0, block.reshape((-1,))])
+ W = np.concatenate([W, vblock])
+ idx[pos] = nb_nonzero
+ f.write('#ifdef DOT_PROD\n')
+ printVector(f, W, name, dtype='qweight')
+ f.write('#else /*DOT_PROD*/\n')
+ printVector(f, W0, name, dtype='qweight')
+ f.write('#endif /*DOT_PROD*/\n')
+ printVector(f, idx, name + '_idx', dtype='int')
+ return AQ
+
+def dump_sparse_gru(self, f, hf):
+ name = 'sparse_' + self.name
+ print("printing layer " + name + " of type sparse " + self.__class__.__name__)
+ weights = self.get_weights()
+ qweights = printSparseVector(f, weights[1], name + '_recurrent_weights')
+ printVector(f, weights[-1], name + '_bias')
+ subias = weights[-1].copy()
+ subias[1,:] = subias[1,:] - np.sum(qweights*(1./128),axis=0)
+ printVector(f, subias, name + '_subias')
+ if hasattr(self, 'activation'):
+ activation = self.activation.__name__.upper()
+ else:
+ activation = 'TANH'
+ if hasattr(self, 'reset_after') and not self.reset_after:
+ reset_after = 0
+ else:
+ reset_after = 1
+ neurons = weights[0].shape[1]//3
+ max_rnn_neurons = neurons
+ f.write('const SparseGRULayer {} = {{\n {}_bias,\n {}_subias,\n {}_recurrent_weights_diag,\n {}_recurrent_weights,\n {}_recurrent_weights_idx,\n {}, ACTIVATION_{}, {}\n}};\n\n'
+ .format(name, name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+ hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+ hf.write('extern const SparseGRULayer {};\n\n'.format(name));
+ return max_rnn_neurons
+
+def dump_gru_layer(self, f, hf, dotp=False, sparse=False):
+ name = self.name
+ print("printing layer " + name + " of type " + self.__class__.__name__)
+ weights = self.get_weights()
+ if sparse:
+ qweight = printSparseVector(f, weights[0], name + '_weights', have_diag=False)
+ else:
+ qweight = printVector(f, weights[0], name + '_weights')
+
+ if dotp:
+ f.write('#ifdef DOT_PROD\n')
+ qweight2 = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127)
+ printVector(f, qweight2, name + '_recurrent_weights', dotp=True, dtype='qweight')
+ f.write('#else /*DOT_PROD*/\n')
+ else:
+ qweight2 = weights[1]
+
+ printVector(f, weights[1], name + '_recurrent_weights')
+ if dotp:
+ f.write('#endif /*DOT_PROD*/\n')
+
+ printVector(f, weights[-1], name + '_bias')
+ subias = weights[-1].copy()
+ subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0)
+ subias[1,:] = subias[1,:] - np.sum(qweight2*(1./128.),axis=0)
+ printVector(f, subias, name + '_subias')
+ if hasattr(self, 'activation'):
+ activation = self.activation.__name__.upper()
+ else:
+ activation = 'TANH'
+ if hasattr(self, 'reset_after') and not self.reset_after:
+ reset_after = 0
+ else:
+ reset_after = 1
+ neurons = weights[0].shape[1]//3
+ max_rnn_neurons = neurons
+ f.write('const GRULayer {} = {{\n {}_bias,\n {}_subias,\n {}_weights,\n NULL,\n {}_recurrent_weights,\n {}, {}, ACTIVATION_{}, {}\n}};\n\n'
+ .format(name, name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+ hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+ hf.write('extern const GRULayer {};\n\n'.format(name));
+ return max_rnn_neurons
+
+def dump_dense_layer_impl(name, weights, bias, activation, f, hf):
+ printVector(f, weights, name + '_weights')
+ printVector(f, bias, name + '_bias')
+ f.write('const DenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, ACTIVATION_{}\n}};\n\n'
+ .format(name, name, name, weights.shape[0], weights.shape[1], activation))
+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1]))
+ hf.write('extern const DenseLayer {};\n\n'.format(name));
+
+def dump_dense_layer(self, f, hf):
+ name = self.name
+ print("printing layer " + name + " of type " + self.__class__.__name__)
+ weights = self.get_weights()
+ activation = self.activation.__name__.upper()
+ dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf)
+ return False
+
+def dump_conv1d_layer(self, f, hf):
+ name = self.name
+ print("printing layer " + name + " of type " + self.__class__.__name__)
+ weights = self.get_weights()
+ printVector(f, weights[0], name + '_weights')
+ printVector(f, weights[-1], name + '_bias')
+ activation = self.activation.__name__.upper()
+ max_conv_inputs = weights[0].shape[1]*weights[0].shape[0]
+ f.write('const Conv1DLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n'
+ .format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2]))
+ hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1)))
+ hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2))
+ hf.write('extern const Conv1DLayer {};\n\n'.format(name));
+ return max_conv_inputs
\ No newline at end of file
--- a/dnn/vec_neon.h
+++ b/dnn/vec_neon.h
@@ -33,7 +33,12 @@
#ifndef DISABLE_DOT_PROD
#define DOT_PROD
#endif
+
+#ifdef DOT_PROD
typedef signed char qweight;
+#else
+typedef float qweight;
+#endif
#ifndef LPCNET_TEST
--
⑨