shithub: opus

Download patch

ref: c1b357ed47656c69a33c336d4522fd051bcd229d
parent: 9629ea6a7015ea64f3c8d4d78cd2453bc8379795
author: Jan Buethe <jbuethe@amazon.de>
date: Tue Oct 18 15:30:23 EDT 2022

first attempt of C implementation of fec encoder (not tested yet due to NEON/DOT_PROD not being separable)

--- /dev/null
+++ b/dnn/nfec_enc.c
@@ -1,0 +1,56 @@
+#include "nfec_enc.h"
+#include "nnet.h"
+#include "nfec_enc_data.h"
+
+
+
+void nfec_encode_dframe(struct NFECEncState *enc_state, float *latents, float *initial_state, const float *input)
+{
+    float buffer[ENC_DENSE1_OUT_SIZE + ENC_DENSE2_OUT_SIZE + ENC_DENSE3_OUT_SIZE + ENC_DENSE4_OUT_SIZE + ENC_DENSE5_OUT_SIZE + ENC_DENSE6_OUT_SIZE + ENC_DENSE7_OUT_SIZE + ENC_DENSE8_OUT_SIZE + GDENSE1_OUT_SIZE];
+    int output_index = 0;
+    int input_index = 0;
+
+    /* run encoder stack and concatenate output in buffer*/
+    compute_dense(&enc_dense1, &buffer[output_index], input);
+    input_index = output_index;
+    output_index += ENC_DENSE1_OUT_SIZE;
+
+    compute_gru3(&enc_dense2, enc_state->dense2_state, &buffer[input_index]);
+    memcpy(&buffer[output_index], enc_state->dense2_state, ENC_DENSE2_OUT_SIZE * sizeof(float));
+    input_index = output_index;
+    output_index += ENC_DENSE2_OUT_SIZE;
+
+    compute_dense(&enc_dense3, &buffer[output_index], &buffer[input_index]);
+    input_index = output_index;
+    output_index += ENC_DENSE3_OUT_SIZE;
+
+    compute_gru3(&enc_dense4, enc_state->dense4_state, &buffer[input_index]);
+    memcpy(&buffer[output_index], enc_state->dense4_state, ENC_DENSE4_OUT_SIZE * sizeof(float));
+    input_index = output_index;
+    output_index += ENC_DENSE4_OUT_SIZE;
+
+    compute_dense(&enc_dense5, &buffer[output_index], &buffer[input_index]);
+    input_index = output_index;
+    output_index += ENC_DENSE5_OUT_SIZE;
+
+    compute_gru3(&enc_dense6, enc_state->dense6_state, &buffer[input_index]);
+    memcpy(&buffer[output_index], enc_state->dense6_state, ENC_DENSE6_OUT_SIZE * sizeof(float));
+    input_index = output_index;
+    output_index += ENC_DENSE6_OUT_SIZE;
+
+    compute_dense(&enc_dense7, &buffer[output_index], &buffer[input_index]);
+    input_index = output_index;
+    output_index += ENC_DENSE7_OUT_SIZE;
+
+    compute_dense(&enc_dense8, &buffer[output_index], &buffer[input_index]);
+    output_index += ENC_DENSE8_OUT_SIZE;
+
+    /* compute latents from concatenated input buffer */
+    compute_conv1d(&bits_dense, latents, enc_state->bits_dense_state, buffer);
+
+    /* next, calculate initial state */
+    compute_dense(&gdense1, &buffer[output_index], buffer);
+    input_index = output_index;
+    compute_dense(&gdense2, initial_state, &buffer[input_index]);
+
+}
\ No newline at end of file
--- /dev/null
+++ b/dnn/nfec_enc.h
@@ -1,0 +1,15 @@
+#ifndef _NFEC_ENC_H
+#define _NFEC_ENC_H
+
+#include "nfec_enc_data.h"
+
+struct NFECEncState{
+    float dense2_state[3 * ENC_DENSE2_STATE_SIZE];
+    float dense4_state[3 * ENC_DENSE4_STATE_SIZE];
+    float dense6_state[3 * ENC_DENSE6_STATE_SIZE];
+    float bits_dense_state[BITS_DENSE_STATE_SIZE];
+};
+
+void nfec_encode_dframe(struct NFECEncState *enc_state, float *latents, float *initial_state, const float *input);
+
+#endif
\ No newline at end of file
--- /dev/null
+++ b/dnn/nfec_enc_demo.c
@@ -1,0 +1,46 @@
+#include <stdlib.h>
+#include <stdio.h>
+
+#include "nfec_enc.h"
+
+void usage()
+{
+    printf("nfec_enc_demo <features>");
+    exit(1);
+}
+
+int main(int argc, char **argv)
+{
+    struct NFECEncState enc_state;
+    float feature_buffer[32];
+    float dframe[2 * 20];
+    float latents[80];
+    float initial_state[24];
+    int index = 0;
+    FILE *fid;
+
+    if (argc < 2)
+    {
+        usage();
+    }
+
+    fid = fopen(argv[1], "rb");
+    if (fid == NULL)
+    {
+        fprintf(stderr, "could not open feature file %s\n", argv[1]);
+        usage();
+    }
+
+    while (fread(feature_buffer, sizeof(float), 32, fid) == 32)
+    {
+        memcpy(dframe[16 * index++], feature_buffer, 16*sizeof(float));
+
+        if (index == 2)
+        {
+            nfec_encode_dframe(&enc_state, latents, initial_state, dframe);
+            index = 0;
+        }
+    }
+}
+
+/* gcc -DDISABLE_DOT_PROD nfec_enc_demo.c nfec_enc.c nnet.c nfec_enc_data.c -o nfec_enc_demo */
\ No newline at end of file
--- a/dnn/nnet.c
+++ b/dnn/nnet.c
@@ -38,6 +38,7 @@
 #include "tansig_table.h"
 #include "nnet.h"
 #include "nnet_data.h"
+#include "nfec_enc_data.h"
 #include "plc_data.h"
 
 #ifdef NO_OPTIMIZATIONS
@@ -129,6 +130,11 @@
    compute_activation(output, output, N, layer->activation);
 }
 
+void compute_dense(const DenseLayer *layer, float *output, const float *input)
+{
+   return _lpcnet_compute_dense(layer, output, input);
+}
+
 void compute_mdense(const MDenseLayer *layer, float *output, const float *input)
 {
    int i, c;
@@ -316,7 +322,7 @@
       state[i] = h[i];
 }
 
-#define MAX_RNN_NEURONS_ALL IMAX(MAX_RNN_NEURONS, PLC_MAX_RNN_NEURONS)
+#define MAX_RNN_NEURONS_ALL IMAX(IMAX(MAX_RNN_NEURONS, PLC_MAX_RNN_NEURONS), NFEC_ENC_MAX_RNN_NEURONS)
 
 void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input)
 {
@@ -442,12 +448,14 @@
       state[i] = z[i]*state[i] + (1-z[i])*h[i];
 }
 
+#define MAX_CONV_INPUTS_ALL IMAX(MAX_CONV_INPUTS, NFEC_ENC_MAX_CONV_INPUTS)
+
 void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input)
 {
    int i;
    int N, M;
    int stride;
-   float tmp[MAX_CONV_INPUTS];
+   float tmp[MAX_CONV_INPUTS_ALL];
    celt_assert(input != output);
    celt_assert(layer->nb_inputs*layer->kernel_size <= MAX_CONV_INPUTS);
    RNN_COPY(tmp, mem, layer->nb_inputs*(layer->kernel_size-1));
--- a/dnn/nnet.h
+++ b/dnn/nnet.h
@@ -98,6 +98,8 @@
 
 void _lpcnet_compute_dense(const DenseLayer *layer, float *output, const float *input);
 
+void compute_dense(const DenseLayer *layer, float *output, const float *input);
+
 void compute_mdense(const MDenseLayer *layer, float *output, const float *input);
 
 int sample_mdense(const MDenseLayer *layer,  const float *input, const float *sampling_logit_table, kiss99_ctx *rng);
--- /dev/null
+++ b/dnn/training_tf2/dump_nfec_model.py
@@ -1,0 +1,123 @@
+import argparse
+import os
+
+parser = argparse.ArgumentParser()
+
+parser.add_argument('weights', metavar="<weight file>", type=str, help='model weight file in hdf5 format')
+parser.add_argument('--cond-size', type=int, help="conditioning size (default: 256)", default=256)
+parser.add_argument('--latent-dim', type=int, help="dimension of latent space (default: 80)", default=80)
+
+args = parser.parse_args()
+
+# now import the heavy stuff
+from keraslayerdump import dump_conv1d_layer, dump_dense_layer, dump_gru_layer
+from rdovae import new_rdovae_model
+
+def start_header(header_fid, header_name):
+    header_guard = "_" + os.path.basename(header_name)[:-2].upper() + "_H"
+    header_fid.write(
+f"""
+#ifndef {header_guard}
+#define {header_guard}
+
+#include "nnet.h"
+
+"""
+    )
+
+def finish_header(header_fid):
+    header_fid.write(
+"""
+#endif
+
+"""
+    )
+
+def start_source(source_fid, header_name, weight_file):
+    source_fid.write(
+f"""
+/* this source file was automatically generated from weight file {weight_file} */
+
+#include "{header_name}"
+
+"""
+    )
+
+def finish_source(source_fid):
+    pass
+
+
+if __name__ == "__main__":
+
+    model, encoder, decoder, qembedding = new_rdovae_model(20, args.latent_dim, cond_size=args.cond_size)
+    model.load_weights(args.weights)
+
+
+    # for the time being only dump encoder
+    encoder_dense_names = [
+        'enc_dense1',
+        'enc_dense3',
+        'enc_dense5',
+        'enc_dense7',
+        'enc_dense8',
+        'gdense1',
+        'gdense2'
+    ]
+
+    encoder_gru_names = [
+        'enc_dense2',
+        'enc_dense4',
+        'enc_dense6'
+    ]
+
+    encoder_conv1d_names = [
+        'bits_dense'
+    ]
+
+    source_fid = open("nfec_enc_data.c", 'w')
+    header_fid = open("nfec_enc_data.h", 'w')
+
+    start_header(header_fid, "nfec_enc_data.h")
+    start_source(source_fid, "nfec_enc_data.h", os.path.basename(args.weights))
+
+    # dump GRUs
+    max_rnn_neurons = max(
+        [
+            dump_gru_layer(encoder.get_layer(name), source_fid, header_fid)
+            for name in encoder_gru_names
+        ]
+    )
+
+    # dump conv layers
+    max_conv_inputs = max(
+        [
+            dump_conv1d_layer(encoder.get_layer(name), source_fid, header_fid)
+            for name in encoder_conv1d_names
+        ] 
+    )
+
+    # dump Dense layers
+    for name in encoder_dense_names:
+        layer = encoder.get_layer(name)
+        dump_dense_layer(layer, source_fid, header_fid)
+
+    # some global constants
+    header_fid.write(
+f"""
+#define NFEC_NUM_FEATURES 20
+
+#define NFEC_LATENT_DIM {args.latent_dim}
+
+#define NFEC_ENC_MAX_RNN_NEURONS {max_rnn_neurons}
+
+#define NFEC_ENC_MAX_CONV_INPUTS {max_conv_inputs}
+
+"""
+    )
+
+    finish_header(header_fid)
+    finish_source(source_fid)
+
+    header_fid.close()
+    source_fid.close()
+
--- /dev/null
+++ b/dnn/training_tf2/keraslayerdump.py
@@ -1,0 +1,160 @@
+""" helper functions for dumping some Keras layers to C files """
+
+import numpy as np
+
+
+def printVector(f, vector, name, dtype='float', dotp=False):
+    """ prints vector as one-dimensional C array """
+    if dotp:
+        vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
+        vector = vector.transpose((2, 0, 3, 1))
+    v = np.reshape(vector, (-1))
+    f.write('static const {} {}[{}] = {{\n   '.format(dtype, name, len(v)))
+    for i in range(0, len(v)):
+        f.write('{}'.format(v[i]))
+        if (i!=len(v)-1):
+            f.write(',')
+        else:
+            break;
+        if (i%8==7):
+            f.write("\n   ")
+        else:
+            f.write(" ")
+    f.write('\n};\n\n')
+    return vector
+
+def printSparseVector(f, A, name, have_diag=True):
+    N = A.shape[0]
+    M = A.shape[1]
+    W = np.zeros((0,), dtype='int')
+    W0 = np.zeros((0,))
+    if have_diag:
+        diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
+        A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
+        A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
+        A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
+        printVector(f, diag, name + '_diag')
+    AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int')
+    idx = np.zeros((0,), dtype='int')
+    for i in range(M//8):
+        pos = idx.shape[0]
+        idx = np.append(idx, -1)
+        nb_nonzero = 0
+        for j in range(N//4):
+            block = A[j*4:(j+1)*4, i*8:(i+1)*8]
+            qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8]
+            if np.sum(np.abs(block)) > 1e-10:
+                nb_nonzero = nb_nonzero + 1
+                idx = np.append(idx, j*4)
+                vblock = qblock.transpose((1,0)).reshape((-1,))
+                W0 = np.concatenate([W0, block.reshape((-1,))])
+                W = np.concatenate([W, vblock])
+        idx[pos] = nb_nonzero
+    f.write('#ifdef DOT_PROD\n')
+    printVector(f, W, name, dtype='qweight')
+    f.write('#else /*DOT_PROD*/\n')
+    printVector(f, W0, name, dtype='qweight')
+    f.write('#endif /*DOT_PROD*/\n')
+    printVector(f, idx, name + '_idx', dtype='int')
+    return AQ
+
+def dump_sparse_gru(self, f, hf):
+    name = 'sparse_' + self.name
+    print("printing layer " + name + " of type sparse " + self.__class__.__name__)
+    weights = self.get_weights()
+    qweights = printSparseVector(f, weights[1], name + '_recurrent_weights')
+    printVector(f, weights[-1], name + '_bias')
+    subias = weights[-1].copy()
+    subias[1,:] = subias[1,:] - np.sum(qweights*(1./128),axis=0)
+    printVector(f, subias, name + '_subias')
+    if hasattr(self, 'activation'):
+        activation = self.activation.__name__.upper()
+    else:
+        activation = 'TANH'
+    if hasattr(self, 'reset_after') and not self.reset_after:
+        reset_after = 0
+    else:
+        reset_after = 1
+    neurons = weights[0].shape[1]//3
+    max_rnn_neurons = neurons
+    f.write('const SparseGRULayer {} = {{\n   {}_bias,\n   {}_subias,\n   {}_recurrent_weights_diag,\n   {}_recurrent_weights,\n   {}_recurrent_weights_idx,\n   {}, ACTIVATION_{}, {}\n}};\n\n'
+            .format(name, name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
+    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+    hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+    hf.write('extern const SparseGRULayer {};\n\n'.format(name));
+    return max_rnn_neurons
+
+def dump_gru_layer(self, f, hf, dotp=False, sparse=False):
+    name = self.name
+    print("printing layer " + name + " of type " + self.__class__.__name__)
+    weights = self.get_weights()
+    if sparse:
+        qweight = printSparseVector(f, weights[0], name + '_weights', have_diag=False)
+    else:
+        qweight = printVector(f, weights[0], name + '_weights')
+
+    if dotp:
+        f.write('#ifdef DOT_PROD\n')
+        qweight2 = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127)
+        printVector(f, qweight2, name + '_recurrent_weights', dotp=True, dtype='qweight')
+        f.write('#else /*DOT_PROD*/\n')
+    else:
+        qweight2 = weights[1]
+
+    printVector(f, weights[1], name + '_recurrent_weights')
+    if dotp:
+        f.write('#endif /*DOT_PROD*/\n')
+
+    printVector(f, weights[-1], name + '_bias')
+    subias = weights[-1].copy()
+    subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0)
+    subias[1,:] = subias[1,:] - np.sum(qweight2*(1./128.),axis=0)
+    printVector(f, subias, name + '_subias')
+    if hasattr(self, 'activation'):
+        activation = self.activation.__name__.upper()
+    else:
+        activation = 'TANH'
+    if hasattr(self, 'reset_after') and not self.reset_after:
+        reset_after = 0
+    else:
+        reset_after = 1
+    neurons = weights[0].shape[1]//3
+    max_rnn_neurons = neurons
+    f.write('const GRULayer {} = {{\n   {}_bias,\n   {}_subias,\n   {}_weights,\n   NULL,\n   {}_recurrent_weights,\n   {}, {}, ACTIVATION_{}, {}\n}};\n\n'
+            .format(name, name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
+    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+    hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+    hf.write('extern const GRULayer {};\n\n'.format(name));
+    return max_rnn_neurons
+
+def dump_dense_layer_impl(name, weights, bias, activation, f, hf):
+    printVector(f, weights, name + '_weights')
+    printVector(f, bias, name + '_bias')
+    f.write('const DenseLayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
+            .format(name, name, name, weights.shape[0], weights.shape[1], activation))
+    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1]))
+    hf.write('extern const DenseLayer {};\n\n'.format(name));
+
+def dump_dense_layer(self, f, hf):
+    name = self.name
+    print("printing layer " + name + " of type " + self.__class__.__name__)
+    weights = self.get_weights()
+    activation = self.activation.__name__.upper()
+    dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf)
+    return False
+
+def dump_conv1d_layer(self, f, hf):
+    name = self.name
+    print("printing layer " + name + " of type " + self.__class__.__name__)
+    weights = self.get_weights()
+    printVector(f, weights[0], name + '_weights')
+    printVector(f, weights[-1], name + '_bias')
+    activation = self.activation.__name__.upper()
+    max_conv_inputs = weights[0].shape[1]*weights[0].shape[0]
+    f.write('const Conv1DLayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}, {}, {}, ACTIVATION_{}\n}};\n\n'
+            .format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
+    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2]))
+    hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1)))
+    hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2))
+    hf.write('extern const Conv1DLayer {};\n\n'.format(name));
+    return max_conv_inputs
\ No newline at end of file
--- a/dnn/vec_neon.h
+++ b/dnn/vec_neon.h
@@ -33,7 +33,12 @@
 #ifndef DISABLE_DOT_PROD
 #define DOT_PROD
 #endif
+
+#ifdef DOT_PROD
 typedef signed char qweight;
+#else
+typedef float qweight;
+#endif
 
 
 #ifndef LPCNET_TEST
--