ref: adc50cab5b6b4e74344497859fd414e5f928b227
parent: 7331e17e924e8894ced9c4247727f218a11c3e91
author: Jean-Marc Valin <jmvalin@amazon.com>
date: Wed Aug 4 10:56:02 EDT 2021
dump_lpcnet.py should work the same for end2end
--- a/dnn/training_tf2/dump_lpcnet.py
+++ b/dnn/training_tf2/dump_lpcnet.py
@@ -32,6 +32,7 @@
from tensorflow.keras.layers import Layer, GRU, Dense, Conv1D, Embedding
from ulaw import ulaw2lin, lin2ulaw
from mdense import MDense
+from diffembed import diff_Embed
import h5py
import re
@@ -234,6 +235,7 @@
dump_embedding_layer_impl(name, weights, f, hf)
return False
Embedding.dump_layer = dump_embedding_layer
+diff_Embed.dump_layer = dump_embedding_layer
filename = sys.argv[1]
with h5py.File(filename, "r") as f:
@@ -244,7 +246,7 @@
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
#model.summary()
-model.load_weights(filename)
+model.load_weights(filename, by_name=True)
if len(sys.argv) > 2:
cfile = sys.argv[2];
--
⑨