ref: ad057305f718f51d9b05c344b80bcbeff2ba4c21
parent: eb72d29a15a24cc1b68f66161293299cf06f0cc3
author: Jean-Marc Valin <jmvalin@amazon.com>
date: Thu Jul 27 15:51:43 EDT 2023
Make RDOVAE encoder use LinearLayer directly
--- a/autogen.bat
+++ b/autogen.bat
@@ -10,8 +10,6 @@
REM Remove trailing ")" character from the model variable
set "model=%model:~0,-1%"
-cd dnn
-call download_model.bat %model%
-cd ..
+call dnn\download_model.bat %model%
echo Updating build configuration files, please wait....
--- a/autogen.sh
+++ b/autogen.sh
@@ -9,7 +9,7 @@
srcdir=`dirname $0`
test -n "$srcdir" && cd "$srcdir"
-(cd dnn; ./download_model.sh 2ddc476)
+dnn/download_model.sh eb72d29
echo "Updating build configuration files, please wait...."
--- a/dnn/download_model.bat
+++ b/dnn/download_model.bat
@@ -7,5 +7,3 @@
)
tar -xvzf %model%
-move .\src\*.c .
-move .\src\*.h .
--- a/dnn/download_model.sh
+++ b/dnn/download_model.sh
@@ -8,6 +8,4 @@
wget https://media.xiph.org/lpcnet/data/$model
fi
tar xvof $model
-touch src/nnet_data.[ch]
-touch src/plc_data.[ch]
-mv src/*.[ch] .
+touch *_data.[ch]
--- a/dnn/dred_rdovae_enc.c
+++ b/dnn/dred_rdovae_enc.c
@@ -46,50 +46,49 @@
float buffer[ENC_DENSE1_OUT_SIZE + ENC_DENSE2_OUT_SIZE + ENC_DENSE3_OUT_SIZE + ENC_DENSE4_OUT_SIZE + ENC_DENSE5_OUT_SIZE + ENC_DENSE6_OUT_SIZE + ENC_DENSE7_OUT_SIZE + ENC_DENSE8_OUT_SIZE + GDENSE1_OUT_SIZE];
int output_index = 0;
int input_index = 0;
- float zero_vector[1024] = {0};
/* run encoder stack and concatenate output in buffer*/
- _lpcnet_compute_dense(&model->enc_dense1, &buffer[output_index], input);
+ compute_generic_dense(&model->enc_dense1, &buffer[output_index], input, ACTIVATION_TANH);
input_index = output_index;
output_index += ENC_DENSE1_OUT_SIZE;
- compute_gruB(&model->enc_dense2, zero_vector, enc_state->dense2_state, &buffer[input_index]);
+ compute_generic_gru(&model->enc_dense2_input, &model->enc_dense2_recurrent, enc_state->dense2_state, &buffer[input_index]);
OPUS_COPY(&buffer[output_index], enc_state->dense2_state, ENC_DENSE2_OUT_SIZE);
input_index = output_index;
output_index += ENC_DENSE2_OUT_SIZE;
- _lpcnet_compute_dense(&model->enc_dense3, &buffer[output_index], &buffer[input_index]);
+ compute_generic_dense(&model->enc_dense3, &buffer[output_index], &buffer[input_index], ACTIVATION_TANH);
input_index = output_index;
output_index += ENC_DENSE3_OUT_SIZE;
- compute_gruB(&model->enc_dense4, zero_vector, enc_state->dense4_state, &buffer[input_index]);
+ compute_generic_gru(&model->enc_dense4_input, &model->enc_dense4_recurrent, enc_state->dense4_state, &buffer[input_index]);
OPUS_COPY(&buffer[output_index], enc_state->dense4_state, ENC_DENSE4_OUT_SIZE);
input_index = output_index;
output_index += ENC_DENSE4_OUT_SIZE;
- _lpcnet_compute_dense(&model->enc_dense5, &buffer[output_index], &buffer[input_index]);
+ compute_generic_dense(&model->enc_dense5, &buffer[output_index], &buffer[input_index], ACTIVATION_TANH);
input_index = output_index;
output_index += ENC_DENSE5_OUT_SIZE;
- compute_gruB(&model->enc_dense6, zero_vector, enc_state->dense6_state, &buffer[input_index]);
+ compute_generic_gru(&model->enc_dense6_input, &model->enc_dense6_recurrent, enc_state->dense6_state, &buffer[input_index]);
OPUS_COPY(&buffer[output_index], enc_state->dense6_state, ENC_DENSE6_OUT_SIZE);
input_index = output_index;
output_index += ENC_DENSE6_OUT_SIZE;
- _lpcnet_compute_dense(&model->enc_dense7, &buffer[output_index], &buffer[input_index]);
+ compute_generic_dense(&model->enc_dense7, &buffer[output_index], &buffer[input_index], ACTIVATION_TANH);
input_index = output_index;
output_index += ENC_DENSE7_OUT_SIZE;
- _lpcnet_compute_dense(&model->enc_dense8, &buffer[output_index], &buffer[input_index]);
+ compute_generic_dense(&model->enc_dense8, &buffer[output_index], &buffer[input_index], ACTIVATION_TANH);
output_index += ENC_DENSE8_OUT_SIZE;
/* compute latents from concatenated input buffer */
- compute_conv1d(&model->bits_dense, latents, enc_state->bits_dense_state, buffer);
+ compute_generic_conv1d(&model->bits_dense, latents, enc_state->bits_dense_state, buffer, BITS_DENSE_IN_SIZE, ACTIVATION_LINEAR);
/* next, calculate initial state */
- _lpcnet_compute_dense(&model->gdense1, &buffer[output_index], buffer);
+ compute_generic_dense(&model->gdense1, &buffer[output_index], buffer, ACTIVATION_TANH);
input_index = output_index;
- _lpcnet_compute_dense(&model->gdense2, initial_state, &buffer[input_index]);
+ compute_generic_dense(&model->gdense2, initial_state, &buffer[input_index], ACTIVATION_TANH);
}
--- a/dnn/nnet.h
+++ b/dnn/nnet.h
@@ -161,7 +161,7 @@
extern const WeightArray lpcnet_arrays[];
extern const WeightArray lpcnet_plc_arrays[];
-extern const WeightArray rdovae_enc_arrays[];
+extern const WeightArray rdovaeenc_arrays[];
extern const WeightArray rdovae_dec_arrays[];
int linear_init(LinearLayer *layer, const WeightArray *arrays,
--- a/dnn/write_lpcnet_weights.c
+++ b/dnn/write_lpcnet_weights.c
@@ -72,7 +72,7 @@
FILE *fout = fopen("weights_blob.bin", "w");
write_weights(lpcnet_arrays, fout);
write_weights(lpcnet_plc_arrays, fout);
- write_weights(rdovae_enc_arrays, fout);
+ write_weights(rdovaeenc_arrays, fout);
write_weights(rdovae_dec_arrays, fout);
fclose(fout);
return 0;
--- a/silk/dred_encoder.c
+++ b/silk/dred_encoder.c
@@ -69,7 +69,7 @@
enc->Fs = Fs;
enc->channels = channels;
#ifndef USE_WEIGHTS_FILE
- init_rdovaeenc(&enc->model, rdovae_enc_arrays);
+ init_rdovaeenc(&enc->model, rdovaeenc_arrays);
#endif
dred_encoder_reset(enc);
}
--
⑨