ref: 51ef273e0601d59171f82c79bb42d9759e2a1195
parent: 8783ef00886217fb9d78d1cbe3362b20783614f9
author: Jean-Marc Valin <jmvalin@amazon.com>
date: Wed Jul 21 12:38:35 EDT 2021
Using 8-bit recurrent weights for GRU B
--- a/dnn/nnet.c
+++ b/dnn/nnet.c
@@ -283,7 +283,7 @@
sgemv_accum8x4(zrh, gru->input_weights, 3*N, M, stride, input);
for (i=0;i<3*N;i++)
recur[i] = gru->bias[3*N + i];
- sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
+ sgemv_accum8x4(recur, gru->recurrent_weights, 3*N, N, stride, state);
for (i=0;i<2*N;i++)
zrh[i] += recur[i];
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
@@ -326,7 +326,7 @@
sparse_sgemv_accum8x4(zrh, gru->input_weights, 3*N, M, gru->input_weights_idx, input);
for (i=0;i<3*N;i++)
recur[i] = gru->bias[3*N + i];
- sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
+ sgemv_accum8x4(recur, gru->recurrent_weights, 3*N, N, stride, state);
for (i=0;i<2*N;i++)
zrh[i] += recur[i];
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
@@ -361,7 +361,7 @@
RNN_COPY(zrh, input, 3*N);
for (i=0;i<3*N;i++)
recur[i] = gru->bias[3*N + i];
- sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
+ sgemv_accum8x4(recur, gru->recurrent_weights, 3*N, N, stride, state);
for (i=0;i<2*N;i++)
zrh[i] += recur[i];
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
--- a/dnn/nnet.h
+++ b/dnn/nnet.h
@@ -59,7 +59,7 @@
const float *subias;
const qweight *input_weights;
const int *input_weights_idx;
- const float *recurrent_weights;
+ const qweight *recurrent_weights;
int nb_inputs;
int nb_neurons;
int activation;
--- a/dnn/training_tf2/dump_lpcnet.py
+++ b/dnn/training_tf2/dump_lpcnet.py
@@ -138,7 +138,14 @@
print("printing layer " + name + " of type " + self.__class__.__name__)
weights = self.get_weights()
qweight = printSparseVector(f, weights[0][:gru_a_size, :], name + '_weights', have_diag=False)
+
+ f.write('#ifdef DOT_PROD\n')
+ qweight = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127)
+ printVector(f, qweight, name + '_recurrent_weights', dotp=True, dtype='qweight')
+ f.write('#else /*DOT_PROD*/\n')
printVector(f, weights[1], name + '_recurrent_weights')
+ f.write('#endif /*DOT_PROD*/\n')
+
printVector(f, weights[-1], name + '_bias')
subias = weights[-1].copy()
subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0)
--- a/dnn/training_tf2/lpcnet.py
+++ b/dnn/training_tf2/lpcnet.py
@@ -259,12 +259,12 @@
rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True, name='gru_a',
recurrent_constraint = constraint, recurrent_regularizer=quant)
rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True, name='gru_b',
- kernel_constraint=constraint, kernel_regularizer=quant)
+ kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
else:
rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a',
recurrent_constraint = constraint, recurrent_regularizer=quant)
rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b',
- kernel_constraint=constraint, kernel_regularizer=quant)
+ kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
rnn_in = Concatenate()([cpcm, rep(cfeat)])
md = MDense(pcm_levels, activation='sigmoid', name='dual_fc')
--
⑨