ref: 4de3e53a737b9991343e0a24797844c2dfb7fe4f
parent: ec671ed90e7ec05efff65115c9d20dcdd519090b
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Wed Nov 28 13:49:19 EST 2018
Adding some sparse GRU support Still need to properly dump as sparse.
--- a/dnn/dump_lpcnet.py
+++ b/dnn/dump_lpcnet.py
@@ -41,10 +41,10 @@
max_conv_inputs = 1
max_mdense_tmp = 1
-def printVector(f, vector, name):
+def printVector(f, vector, name, dtype='float'):
v = np.reshape(vector, (-1));
#print('static const float ', name, '[', len(v), '] = \n', file=f)
- f.write('static const float {}[{}] = {{\n '.format(name, len(v)))
+ f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v)))
for i in range(0, len(v)):
f.write('{}'.format(v[i]))
if (i!=len(v)-1):
@@ -59,11 +59,51 @@
f.write('\n};\n\n')
return;
+def printSparseVector(f, A, name):
+ N = A.shape[0]
+ W = np.zeros((0,))
+ diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
+ A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
+ A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
+ A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
+ printVector(f, diag, name + '_diag')
+ for i in range(3*N//16):
+ for j in range(N):
+ W = np.concatenate([W, A[j, i*16:(i+1)*16]])
+ printVector(f, W, name)
+ idx = np.tile(np.concatenate([np.array([N]), np.arange(N)]), 3*N//16)
+ printVector(f, idx, name + '_idx', dtype='int')
+ return;
+
def dump_layer_ignore(self, f, hf):
print("ignoring layer " + self.name + " of type " + self.__class__.__name__)
return False
Layer.dump_layer = dump_layer_ignore
+def dump_sparse_gru(self, f, hf):
+ global max_rnn_neurons
+ name = 'sparse_' + self.name
+ print("printing layer " + name + " of type sparse " + self.__class__.__name__)
+ weights = self.get_weights()
+ printSparseVector(f, weights[1], name + '_recurrent_weights')
+ printVector(f, weights[-1], name + '_bias')
+ if hasattr(self, 'activation'):
+ activation = self.activation.__name__.upper()
+ else:
+ activation = 'TANH'
+ if hasattr(self, 'reset_after') and not self.reset_after:
+ reset_after = 0
+ else:
+ reset_after = 1
+ neurons = weights[0].shape[1]//3
+ max_rnn_neurons = max(max_rnn_neurons, neurons)
+ f.write('const SparseGRULayer {} = {{\n {}_bias,\n {}_recurrent_weights_diag,\n {}_recurrent_weights,\n {}_recurrent_weights_idx,\n {}, ACTIVATION_{}, {}\n}};\n\n'
+ .format(name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+ hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
+ hf.write('extern const SparseGRULayer {};\n\n'.format(name));
+ return True
+
def dump_gru_layer(self, f, hf):
global max_rnn_neurons
name = self.name
@@ -204,6 +244,8 @@
for i, layer in enumerate(model.layers):
if layer.dump_layer(f, hf):
layer_list.append(layer.name)
+
+dump_sparse_gru(model.get_layer('gru_a'), f, hf)
hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons))
hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs))
--- a/dnn/lpcnet.c
+++ b/dnn/lpcnet.c
@@ -122,7 +122,8 @@
accum_embedding(&gru_a_embed_sig, gru_a_input, last_sig);
accum_embedding(&gru_a_embed_pred, gru_a_input, pred);
accum_embedding(&gru_a_embed_exc, gru_a_input, last_exc);
- compute_gru3(&gru_a, net->gru_a_state, gru_a_input);
+ /*compute_gru3(&gru_a, net->gru_a_state, gru_a_input);*/
+ compute_sparse_gru(&sparse_gru_a, net->gru_a_state, gru_a_input);
RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE);
RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE);
compute_gru2(&gru_b, net->gru_b_state, in_b);
--- a/dnn/nnet.c
+++ b/dnn/nnet.c
@@ -105,6 +105,38 @@
_mm256_storeu_ps (&y[8], vy8);
}
}
+static void sparse_gemm_accum16(float *out, const float *weights, int rows, const int *idx, const float *x)
+{
+ int i, j;
+ for (i=0;i<rows;i+=16)
+ {
+ float * restrict y;
+ int cols;
+ __m256 vy0, vy8;
+ y = &out[i];
+ vy0 = _mm256_loadu_ps(&y[0]);
+ vy8 = _mm256_loadu_ps(&y[8]);
+ cols = *idx++;
+ for (j=0;j<cols;j++)
+ {
+ int id;
+ __m256 vxj;
+ __m256 vw;
+ id = *idx++;
+ vxj = _mm256_broadcast_ss(&x[id]);
+
+ vw = _mm256_loadu_ps(&weights[0]);
+ vy0 = _mm256_fmadd_ps(vw, vxj, vy0);
+
+ vw = _mm256_loadu_ps(&weights[8]);
+ vy8 = _mm256_fmadd_ps(vw, vxj, vy8);
+ weights += 16;
+ }
+ _mm256_storeu_ps (&y[0], vy0);
+ _mm256_storeu_ps (&y[8], vy8);
+ }
+}
+
#else
static void gemm_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
{
@@ -346,6 +378,43 @@
for (i=0;i<3*N;i++)
recur[i] = gru->bias[3*N + i];
gemm_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
+ for (i=0;i<2*N;i++)
+ zrh[i] += recur[i];
+ compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
+ for (i=0;i<N;i++)
+ h[i] += recur[2*N+i]*r[i];
+ compute_activation(h, h, N, gru->activation);
+ for (i=0;i<N;i++)
+ h[i] = z[i]*state[i] + (1-z[i])*h[i];
+ for (i=0;i<N;i++)
+ state[i] = h[i];
+}
+
+void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input)
+{
+ int i, k;
+ int N;
+ float zrh[3*MAX_RNN_NEURONS];
+ float recur[3*MAX_RNN_NEURONS];
+ float *z;
+ float *r;
+ float *h;
+ N = gru->nb_neurons;
+ z = zrh;
+ r = &zrh[N];
+ h = &zrh[2*N];
+ celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
+ celt_assert(input != state);
+ celt_assert(gru->reset_after);
+ RNN_COPY(zrh, input, 3*N);
+ for (i=0;i<3*N;i++)
+ recur[i] = gru->bias[3*N + i];
+ for (k=0;k<3;k++)
+ {
+ for (i=0;i<N;i++)
+ recur[k*N + i] += gru->diag_weights[k*N + i]*state[i];
+ }
+ sparse_gemm_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state);
for (i=0;i<2*N;i++)
zrh[i] += recur[i];
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
--- a/dnn/nnet.h
+++ b/dnn/nnet.h
@@ -64,6 +64,16 @@
typedef struct {
const float *bias;
+ const float *diag_weights;
+ const float *recurrent_weights;
+ const int *idx;
+ int nb_neurons;
+ int activation;
+ int reset_after;
+} SparseGRULayer;
+
+typedef struct {
+ const float *bias;
const float *input_weights;
int nb_inputs;
int kernel_size;
@@ -88,6 +98,8 @@
void compute_gru2(const GRULayer *gru, float *state, const float *input);
void compute_gru3(const GRULayer *gru, float *state, const float *input);
+
+void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input);
void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input);
--
⑨