shithub: opus

Download patch

ref: 2f290d32ed79ad172b5981498711a6291b1f88a2
parent: 7b8ba143f1a1688d4a2527ae3124c9cf65ead55a
author: Jan Buethe <jbuethe@amazon.de>
date: Tue Sep 12 10:50:24 EDT 2023

added more enhancement stuff

Signed-off-by: Jan Buethe <jbuethe@amazon.de>

--- /dev/null
+++ b/dnn/torch/osce/adv_train_model.py
@@ -1,0 +1,458 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import os
+import argparse
+import sys
+import math as m
+import random
+
+import yaml
+
+from tqdm import tqdm
+
+try:
+    import git
+    has_git = True
+except:
+    has_git = False
+
+import torch
+from torch.optim.lr_scheduler import LambdaLR
+import torch.nn.functional as F
+
+from scipy.io import wavfile
+import numpy as np
+import pesq
+
+from data import SilkEnhancementSet
+from models import model_dict
+
+
+from utils.silk_features import load_inference_data
+from utils.misc import count_parameters, retain_grads, get_grad_norm, create_weights
+
+from losses.stft_loss import MRSTFTLoss, MRLogMelLoss
+
+
+parser = argparse.ArgumentParser()
+
+parser.add_argument('setup', type=str, help='setup yaml file')
+parser.add_argument('output', type=str, help='output path')
+parser.add_argument('--device', type=str, help='compute device', default=None)
+parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint', default=None)
+parser.add_argument('--testdata', type=str, help='path to features and signal for testing', default=None)
+parser.add_argument('--no-redirect', action='store_true', help='disables re-direction of stdout')
+
+args = parser.parse_args()
+
+
+torch.set_num_threads(4)
+
+with open(args.setup, 'r') as f:
+    setup = yaml.load(f.read(), yaml.FullLoader)
+
+checkpoint_prefix = 'checkpoint'
+output_prefix = 'output'
+setup_name = 'setup.yml'
+output_file='out.txt'
+
+
+# check model
+if not 'name' in setup['model']:
+    print(f'warning: did not find model entry in setup, using default PitchPostFilter')
+    model_name = 'pitchpostfilter'
+else:
+    model_name = setup['model']['name']
+
+# prepare output folder
+if os.path.exists(args.output):
+    print("warning: output folder exists")
+
+    reply = input('continue? (y/n): ')
+    while reply not in {'y', 'n'}:
+        reply = input('continue? (y/n): ')
+
+    if reply == 'n':
+        os._exit()
+else:
+    os.makedirs(args.output, exist_ok=True)
+
+checkpoint_dir = os.path.join(args.output, 'checkpoints')
+os.makedirs(checkpoint_dir, exist_ok=True)
+
+# add repo info to setup
+if has_git:
+    working_dir = os.path.split(__file__)[0]
+    try:
+        repo = git.Repo(working_dir)
+        setup['repo'] = dict()
+        hash = repo.head.object.hexsha
+        urls = list(repo.remote().urls)
+        is_dirty = repo.is_dirty()
+
+        if is_dirty:
+            print("warning: repo is dirty")
+
+        setup['repo']['hash'] = hash
+        setup['repo']['urls'] = urls
+        setup['repo']['dirty'] = is_dirty
+    except:
+        has_git = False
+
+# dump setup
+with open(os.path.join(args.output, setup_name), 'w') as f:
+    yaml.dump(setup, f)
+
+
+ref = None
+if args.testdata is not None:
+
+    testsignal, features, periods, numbits = load_inference_data(args.testdata, **setup['data'])
+
+    inference_test = True
+    inference_folder = os.path.join(args.output, 'inference_test')
+    os.makedirs(os.path.join(args.output, 'inference_test'), exist_ok=True)
+
+    try:
+        ref = np.fromfile(os.path.join(args.testdata, 'clean.s16'), dtype=np.int16)
+    except:
+        pass
+else:
+    inference_test = False
+
+# training parameters
+batch_size      = setup['training']['batch_size']
+epochs          = setup['training']['epochs']
+lr              = setup['training']['lr']
+lr_decay_factor = setup['training']['lr_decay_factor']
+lr_gen          = lr * setup['training']['gen_lr_reduction']
+lambda_feat     =  setup['training']['lambda_feat']
+lambda_reg      = setup['training']['lambda_reg']
+adv_target      = setup['training'].get('adv_target', 'target')
+
+# load training dataset
+data_config = setup['data']
+data = SilkEnhancementSet(setup['dataset'], **data_config)
+
+# load validation dataset if given
+if 'validation_dataset' in setup:
+    validation_data = SilkEnhancementSet(setup['validation_dataset'], **data_config)
+
+    validation_dataloader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, drop_last=True, num_workers=4)
+
+    run_validation = True
+else:
+    run_validation = False
+
+# create model
+model = model_dict[model_name](*setup['model']['args'], **setup['model']['kwargs'])
+
+# create discriminator
+disc_name = setup['discriminator']['name']
+disc = model_dict[disc_name](
+    *setup['discriminator']['args'], **setup['discriminator']['kwargs']
+)
+
+# set compute device
+if type(args.device) == type(None):
+    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+else:
+    device = torch.device(args.device)
+
+# dataloader
+dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4)
+
+# optimizer is introduced to trainable parameters
+parameters = [p for p in model.parameters() if p.requires_grad]
+optimizer = torch.optim.Adam(parameters, lr=lr_gen)
+
+# disc optimizer
+parameters = [p for p in disc.parameters() if p.requires_grad]
+optimizer_disc = torch.optim.Adam(parameters, lr=lr, betas=[0.5, 0.9])
+
+# learning rate scheduler
+scheduler = LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x))
+
+if args.initial_checkpoint is not None:
+    print(f"loading state dict from {args.initial_checkpoint}...")
+    chkpt = torch.load(args.initial_checkpoint, map_location=device)
+    model.load_state_dict(chkpt['state_dict'])
+
+    if 'disc_state_dict' in chkpt:
+        print(f"loading discriminator state dict from {args.initial_checkpoint}...")
+        disc.load_state_dict(chkpt['disc_state_dict'])
+
+    if 'optimizer_state_dict' in chkpt:
+        print(f"loading optimizer state dict from {args.initial_checkpoint}...")
+        optimizer.load_state_dict(chkpt['optimizer_state_dict'])
+
+    if 'disc_optimizer_state_dict' in chkpt:
+        print(f"loading discriminator optimizer state dict from {args.initial_checkpoint}...")
+        optimizer_disc.load_state_dict(chkpt['disc_optimizer_state_dict'])
+
+    if 'scheduler_state_disc' in chkpt:
+        print(f"loading scheduler state dict from {args.initial_checkpoint}...")
+        scheduler.load_state_dict(chkpt['scheduler_state_dict'])
+
+    # if 'torch_rng_state' in chkpt:
+    #     print(f"setting torch RNG state from {args.initial_checkpoint}...")
+    #     torch.set_rng_state(chkpt['torch_rng_state'])
+
+    if 'numpy_rng_state' in chkpt:
+        print(f"setting numpy RNG state from {args.initial_checkpoint}...")
+        np.random.set_state(chkpt['numpy_rng_state'])
+
+    if 'python_rng_state' in chkpt:
+        print(f"setting Python RNG state from {args.initial_checkpoint}...")
+        random.setstate(chkpt['python_rng_state'])
+
+# loss
+w_l1 = setup['training']['loss']['w_l1']
+w_lm = setup['training']['loss']['w_lm']
+w_slm = setup['training']['loss']['w_slm']
+w_sc = setup['training']['loss']['w_sc']
+w_logmel = setup['training']['loss']['w_logmel']
+w_wsc = setup['training']['loss']['w_wsc']
+w_xcorr = setup['training']['loss']['w_xcorr']
+w_sxcorr = setup['training']['loss']['w_sxcorr']
+w_l2 = setup['training']['loss']['w_l2']
+
+w_sum = w_l1 + w_lm + w_sc + w_logmel + w_wsc + w_slm + w_xcorr + w_sxcorr + w_l2
+
+stftloss = MRSTFTLoss(sc_weight=w_sc, log_mag_weight=w_lm, wsc_weight=w_wsc, smooth_log_mag_weight=w_slm, sxcorr_weight=w_sxcorr).to(device)
+logmelloss = MRLogMelLoss().to(device)
+
+def xcorr_loss(y_true, y_pred):
+    dims = list(range(1, len(y_true.shape)))
+
+    loss = 1 - torch.sum(y_true * y_pred, dim=dims) / torch.sqrt(torch.sum(y_true ** 2, dim=dims) * torch.sum(y_pred ** 2, dim=dims) + 1e-9)
+
+    return torch.mean(loss)
+
+def td_l2_norm(y_true, y_pred):
+    dims = list(range(1, len(y_true.shape)))
+
+    loss = torch.mean((y_true - y_pred) ** 2, dim=dims) / (torch.mean(y_pred ** 2, dim=dims) ** .5 + 1e-6)
+
+    return loss.mean()
+
+def td_l1(y_true, y_pred, pow=0):
+    dims = list(range(1, len(y_true.shape)))
+    tmp = torch.mean(torch.abs(y_true - y_pred), dim=dims) / ((torch.mean(torch.abs(y_pred), dim=dims) + 1e-9) ** pow)
+
+    return torch.mean(tmp)
+
+def criterion(x, y):
+
+    return (w_l1 * td_l1(x, y, pow=1) +  stftloss(x, y) + w_logmel * logmelloss(x, y)
+            + w_xcorr * xcorr_loss(x, y) + w_l2 * td_l2_norm(x, y)) / w_sum
+
+
+# model checkpoint
+checkpoint = {
+    'setup'         : setup,
+    'state_dict'    : model.state_dict(),
+    'loss'          : -1
+}
+
+
+if not args.no_redirect:
+    print(f"re-directing output to {os.path.join(args.output, output_file)}")
+    sys.stdout = open(os.path.join(args.output, output_file), "w")
+
+
+print("summary:")
+
+print(f"generator: {count_parameters(model.cpu()) / 1e6:5.3f} M parameters")
+if hasattr(model, 'flop_count'):
+    print(f"generator: {model.flop_count(16000) / 1e6:5.3f} MFLOPS")
+print(f"discriminator: {count_parameters(disc.cpu()) / 1e6:5.3f} M parameters")
+
+if ref is not None:
+    noisy = np.fromfile(os.path.join(args.testdata, 'noisy.s16'), dtype=np.int16)
+    initial_mos = pesq.pesq(16000, ref, noisy, mode='wb')
+    print(f"initial MOS (PESQ): {initial_mos}")
+
+best_loss = 1e9
+log_interval = 10
+
+
+m_r = 0
+m_f = 0
+s_r = 1
+s_f = 1
+
+def optimizer_to(optim, device):
+    for param in optim.state.values():
+        if isinstance(param, torch.Tensor):
+            param.data = param.data.to(device)
+            if param._grad is not None:
+                param._grad.data = param._grad.data.to(device)
+        elif isinstance(param, dict):
+            for subparam in param.values():
+                if isinstance(subparam, torch.Tensor):
+                    subparam.data = subparam.data.to(device)
+                    if subparam._grad is not None:
+                        subparam._grad.data = subparam._grad.data.to(device)
+
+optimizer_to(optimizer, device)
+optimizer_to(optimizer_disc, device)
+
+retain_grads(model)
+retain_grads(disc)
+
+for ep in range(1, epochs + 1):
+    print(f"training epoch {ep}...")
+
+    model.to(device)
+    disc.to(device)
+    model.train()
+    disc.train()
+
+    running_disc_loss = 0
+    running_adv_loss = 0
+    running_feature_loss = 0
+    running_reg_loss = 0
+    running_disc_grad_norm = 0
+    running_model_grad_norm = 0
+
+    with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:
+        for i, batch in enumerate(tepoch):
+
+            # set gradients to zero
+            optimizer.zero_grad()
+
+            # push batch to device
+            for key in batch:
+                batch[key] = batch[key].to(device)
+
+            target = batch['target'].to(device)
+            disc_target = batch[adv_target].to(device)
+
+            # calculate model output
+            output = model(batch['signals'].permute(0, 2, 1), batch['features'], batch['periods'], batch['numbits'])
+
+            # discriminator update
+            scores_gen = disc(output.detach())
+            scores_real = disc(disc_target.unsqueeze(1))
+
+            disc_loss = 0
+            for score in scores_gen:
+                disc_loss += (((score[-1]) ** 2)).mean()
+                m_f = 0.9 * m_f + 0.1 * score[-1].detach().mean().cpu().item()
+                s_f = 0.9 * s_f + 0.1 * score[-1].detach().std().cpu().item()
+
+            for score in scores_real:
+                disc_loss += (((1 - score[-1]) ** 2)).mean()
+                m_r = 0.9 * m_r + 0.1 * score[-1].detach().mean().cpu().item()
+                s_r = 0.9 * s_r + 0.1 * score[-1].detach().std().cpu().item()
+
+            disc_loss = 0.5 * disc_loss / len(scores_gen)
+            winning_chance = 0.5 * m.erfc( (m_r - m_f) / m.sqrt(2 * (s_f**2 + s_r**2)) )
+
+            disc.zero_grad()
+            disc_loss.backward()
+
+            running_disc_grad_norm += get_grad_norm(disc).detach().cpu().item()
+
+            optimizer_disc.step()
+
+            # generator update
+            scores_gen = disc(output)
+
+            # calculate loss
+            loss_reg = criterion(output.squeeze(1), target)
+
+            num_discs = len(scores_gen)
+            gen_loss = 0
+            for score in  scores_gen:
+                gen_loss += (((1 - score[-1]) ** 2)).mean() / num_discs
+
+            loss_feat = 0
+            for k in range(num_discs):
+                num_layers = len(scores_gen[k]) - 1
+                f = 4 / num_discs / num_layers
+                for l in range(num_layers):
+                    loss_feat += f * F.l1_loss(scores_gen[k][l], scores_real[k][l].detach())
+
+            model.zero_grad()
+
+            (gen_loss + lambda_feat * loss_feat + lambda_reg * loss_reg).backward()
+
+            optimizer.step()
+
+            running_model_grad_norm += get_grad_norm(model).detach().cpu().item()
+            running_adv_loss += gen_loss.detach().cpu().item()
+            running_disc_loss += disc_loss.detach().cpu().item()
+            running_feature_loss += lambda_feat * loss_feat.detach().cpu().item()
+            running_reg_loss += lambda_reg * loss_reg.detach().cpu().item()
+
+            # update status bar
+            if i % log_interval == 0:
+                tepoch.set_postfix(adv_loss=f"{running_adv_loss/(i + 1):8.7f}",
+                                   disc_loss=f"{running_disc_loss/(i + 1):8.7f}",
+                                   feat_loss=f"{running_feature_loss/(i + 1):8.7f}",
+                                   reg_loss=f"{running_reg_loss/(i + 1):8.7f}",
+                                   model_gradnorm=f"{running_model_grad_norm/(i+1):8.7f}",
+                                   disc_gradnorm=f"{running_disc_grad_norm/(i+1):8.7f}",
+                                   wc=f"{100*winning_chance:5.2f}%")
+
+
+    # save checkpoint
+    checkpoint['state_dict'] = model.state_dict()
+    checkpoint['disc_state_dict'] = disc.state_dict()
+    checkpoint['optimizer_state_dict'] = optimizer.state_dict()
+    checkpoint['disc_optimizer_state_dict'] = optimizer_disc.state_dict()
+    checkpoint['scheduler_state_dict'] = scheduler.state_dict()
+    checkpoint['torch_rng_state'] = torch.get_rng_state()
+    checkpoint['numpy_rng_state'] = np.random.get_state()
+    checkpoint['python_rng_state'] = random.getstate()
+    checkpoint['adv_loss']   = running_adv_loss/(i + 1)
+    checkpoint['disc_loss']  = running_disc_loss/(i + 1)
+    checkpoint['feature_loss'] = running_feature_loss/(i + 1)
+    checkpoint['reg_loss'] = running_reg_loss/(i + 1)
+
+
+    if inference_test:
+        print("running inference test...")
+        out = model.process(testsignal, features, periods, numbits).cpu().numpy()
+        wavfile.write(os.path.join(inference_folder, f'{model_name}_epoch_{ep}.wav'), 16000, out)
+        if ref is not None:
+            mos = pesq.pesq(16000, ref, out, mode='wb')
+            print(f"MOS (PESQ): {mos}")
+
+
+    torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth'))
+    torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth'))
+
+
+    print()
+
+print('Done')
--- /dev/null
+++ b/dnn/torch/osce/adv_train_vocoder.py
@@ -1,0 +1,451 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import os
+import argparse
+import sys
+import math as m
+import random
+
+import yaml
+
+from tqdm import tqdm
+
+try:
+    import git
+    has_git = True
+except:
+    has_git = False
+
+import torch
+from torch.optim.lr_scheduler import LambdaLR
+import torch.nn.functional as F
+
+from scipy.io import wavfile
+import numpy as np
+import pesq
+
+from data import LPCNetVocodingDataset
+from models import model_dict
+
+
+from utils.lpcnet_features import load_lpcnet_features
+from utils.misc import count_parameters
+
+from losses.stft_loss import MRSTFTLoss, MRLogMelLoss
+
+
+parser = argparse.ArgumentParser()
+
+parser.add_argument('setup', type=str, help='setup yaml file')
+parser.add_argument('output', type=str, help='output path')
+parser.add_argument('--device', type=str, help='compute device', default=None)
+parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint', default=None)
+parser.add_argument('--test-features', type=str, help='path to features for testing', default=None)
+parser.add_argument('--no-redirect', action='store_true', help='disables re-direction of stdout')
+
+args = parser.parse_args()
+
+
+torch.set_num_threads(4)
+
+with open(args.setup, 'r') as f:
+    setup = yaml.load(f.read(), yaml.FullLoader)
+
+checkpoint_prefix = 'checkpoint'
+output_prefix = 'output'
+setup_name = 'setup.yml'
+output_file='out.txt'
+
+
+# check model
+if not 'name' in setup['model']:
+    print(f'warning: did not find model entry in setup, using default PitchPostFilter')
+    model_name = 'pitchpostfilter'
+else:
+    model_name = setup['model']['name']
+
+# prepare output folder
+if os.path.exists(args.output):
+    print("warning: output folder exists")
+
+    reply = input('continue? (y/n): ')
+    while reply not in {'y', 'n'}:
+        reply = input('continue? (y/n): ')
+
+    if reply == 'n':
+        os._exit()
+else:
+    os.makedirs(args.output, exist_ok=True)
+
+checkpoint_dir = os.path.join(args.output, 'checkpoints')
+os.makedirs(checkpoint_dir, exist_ok=True)
+
+# add repo info to setup
+if has_git:
+    working_dir = os.path.split(__file__)[0]
+    try:
+        repo = git.Repo(working_dir)
+        setup['repo'] = dict()
+        hash = repo.head.object.hexsha
+        urls = list(repo.remote().urls)
+        is_dirty = repo.is_dirty()
+
+        if is_dirty:
+            print("warning: repo is dirty")
+
+        setup['repo']['hash'] = hash
+        setup['repo']['urls'] = urls
+        setup['repo']['dirty'] = is_dirty
+    except:
+        has_git = False
+
+# dump setup
+with open(os.path.join(args.output, setup_name), 'w') as f:
+    yaml.dump(setup, f)
+
+
+ref = None
+# prepare inference test if wanted
+inference_test = False
+if type(args.test_features) != type(None):
+    test_features = load_lpcnet_features(args.test_features)
+    features = test_features['features']
+    periods = test_features['periods']
+    inference_folder = os.path.join(args.output, 'inference_test')
+    os.makedirs(inference_folder, exist_ok=True)
+    inference_test = True
+
+
+# training parameters
+batch_size      = setup['training']['batch_size']
+epochs          = setup['training']['epochs']
+lr              = setup['training']['lr']
+lr_decay_factor = setup['training']['lr_decay_factor']
+lr_gen          = lr * setup['training']['gen_lr_reduction']
+lambda_feat     =  setup['training']['lambda_feat']
+lambda_reg      = setup['training']['lambda_reg']
+adv_target      = setup['training'].get('adv_target', 'target')
+
+
+# load training dataset
+data_config = setup['data']
+data = LPCNetVocodingDataset(setup['dataset'], **data_config)
+
+# load validation dataset if given
+if 'validation_dataset' in setup:
+    validation_data = LPCNetVocodingDataset(setup['validation_dataset'], **data_config)
+
+    validation_dataloader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, drop_last=True, num_workers=4)
+
+    run_validation = True
+else:
+    run_validation = False
+
+# create model
+model = model_dict[model_name](*setup['model']['args'], **setup['model']['kwargs'])
+
+
+# create discriminator
+disc_name = setup['discriminator']['name']
+disc = model_dict[disc_name](
+    *setup['discriminator']['args'], **setup['discriminator']['kwargs']
+)
+
+
+
+# set compute device
+if type(args.device) == type(None):
+    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+else:
+    device = torch.device(args.device)
+
+
+
+# dataloader
+dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4)
+
+# optimizer is introduced to trainable parameters
+parameters = [p for p in model.parameters() if p.requires_grad]
+optimizer = torch.optim.Adam(parameters, lr=lr_gen)
+
+# disc optimizer
+parameters = [p for p in disc.parameters() if p.requires_grad]
+optimizer_disc = torch.optim.Adam(parameters, lr=lr, betas=[0.5, 0.9])
+
+# learning rate scheduler
+scheduler = LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x))
+
+if args.initial_checkpoint is not None:
+    print(f"loading state dict from {args.initial_checkpoint}...")
+    chkpt = torch.load(args.initial_checkpoint, map_location=device)
+    model.load_state_dict(chkpt['state_dict'])
+
+    if 'disc_state_dict' in chkpt:
+        print(f"loading discriminator state dict from {args.initial_checkpoint}...")
+        disc.load_state_dict(chkpt['disc_state_dict'])
+
+    if 'optimizer_state_dict' in chkpt:
+        print(f"loading optimizer state dict from {args.initial_checkpoint}...")
+        optimizer.load_state_dict(chkpt['optimizer_state_dict'])
+
+    if 'disc_optimizer_state_dict' in chkpt:
+        print(f"loading discriminator optimizer state dict from {args.initial_checkpoint}...")
+        optimizer_disc.load_state_dict(chkpt['disc_optimizer_state_dict'])
+
+    if 'scheduler_state_disc' in chkpt:
+        print(f"loading scheduler state dict from {args.initial_checkpoint}...")
+        scheduler.load_state_dict(chkpt['scheduler_state_dict'])
+
+    # if 'torch_rng_state' in chkpt:
+    #     print(f"setting torch RNG state from {args.initial_checkpoint}...")
+    #     torch.set_rng_state(chkpt['torch_rng_state'])
+
+    if 'numpy_rng_state' in chkpt:
+        print(f"setting numpy RNG state from {args.initial_checkpoint}...")
+        np.random.set_state(chkpt['numpy_rng_state'])
+
+    if 'python_rng_state' in chkpt:
+        print(f"setting Python RNG state from {args.initial_checkpoint}...")
+        random.setstate(chkpt['python_rng_state'])
+
+# loss
+w_l1 = setup['training']['loss']['w_l1']
+w_lm = setup['training']['loss']['w_lm']
+w_slm = setup['training']['loss']['w_slm']
+w_sc = setup['training']['loss']['w_sc']
+w_logmel = setup['training']['loss']['w_logmel']
+w_wsc = setup['training']['loss']['w_wsc']
+w_xcorr = setup['training']['loss']['w_xcorr']
+w_sxcorr = setup['training']['loss']['w_sxcorr']
+w_l2 = setup['training']['loss']['w_l2']
+
+w_sum = w_l1 + w_lm + w_sc + w_logmel + w_wsc + w_slm + w_xcorr + w_sxcorr + w_l2
+
+stftloss = MRSTFTLoss(sc_weight=w_sc, log_mag_weight=w_lm, wsc_weight=w_wsc, smooth_log_mag_weight=w_slm, sxcorr_weight=w_sxcorr).to(device)
+logmelloss = MRLogMelLoss().to(device)
+
+def xcorr_loss(y_true, y_pred):
+    dims = list(range(1, len(y_true.shape)))
+
+    loss = 1 - torch.sum(y_true * y_pred, dim=dims) / torch.sqrt(torch.sum(y_true ** 2, dim=dims) * torch.sum(y_pred ** 2, dim=dims) + 1e-9)
+
+    return torch.mean(loss)
+
+def td_l2_norm(y_true, y_pred):
+    dims = list(range(1, len(y_true.shape)))
+
+    loss = torch.mean((y_true - y_pred) ** 2, dim=dims) / (torch.mean(y_pred ** 2, dim=dims) ** .5 + 1e-6)
+
+    return loss.mean()
+
+def td_l1(y_true, y_pred, pow=0):
+    dims = list(range(1, len(y_true.shape)))
+    tmp = torch.mean(torch.abs(y_true - y_pred), dim=dims) / ((torch.mean(torch.abs(y_pred), dim=dims) + 1e-9) ** pow)
+
+    return torch.mean(tmp)
+
+def criterion(x, y):
+
+    return (w_l1 * td_l1(x, y, pow=1) +  stftloss(x, y) + w_logmel * logmelloss(x, y)
+            + w_xcorr * xcorr_loss(x, y) + w_l2 * td_l2_norm(x, y)) / w_sum
+
+
+# model checkpoint
+checkpoint = {
+    'setup'         : setup,
+    'state_dict'    : model.state_dict(),
+    'loss'          : -1
+}
+
+
+if not args.no_redirect:
+    print(f"re-directing output to {os.path.join(args.output, output_file)}")
+    sys.stdout = open(os.path.join(args.output, output_file), "w")
+
+
+print("summary:")
+
+print(f"generator: {count_parameters(model.cpu()) / 1e6:5.3f} M parameters")
+if hasattr(model, 'flop_count'):
+    print(f"generator: {model.flop_count(16000) / 1e6:5.3f} MFLOPS")
+print(f"discriminator: {count_parameters(disc.cpu()) / 1e6:5.3f} M parameters")
+
+if ref is not None:
+    noisy = np.fromfile(os.path.join(args.testdata, 'noisy.s16'), dtype=np.int16)
+    initial_mos = pesq.pesq(16000, ref, noisy, mode='wb')
+    print(f"initial MOS (PESQ): {initial_mos}")
+
+best_loss = 1e9
+log_interval = 10
+
+
+m_r = 0
+m_f = 0
+s_r = 1
+s_f = 1
+
+def optimizer_to(optim, device):
+    for param in optim.state.values():
+        if isinstance(param, torch.Tensor):
+            param.data = param.data.to(device)
+            if param._grad is not None:
+                param._grad.data = param._grad.data.to(device)
+        elif isinstance(param, dict):
+            for subparam in param.values():
+                if isinstance(subparam, torch.Tensor):
+                    subparam.data = subparam.data.to(device)
+                    if subparam._grad is not None:
+                        subparam._grad.data = subparam._grad.data.to(device)
+
+optimizer_to(optimizer, device)
+optimizer_to(optimizer_disc, device)
+
+
+for ep in range(1, epochs + 1):
+    print(f"training epoch {ep}...")
+
+    model.to(device)
+    disc.to(device)
+    model.train()
+    disc.train()
+
+    running_disc_loss = 0
+    running_adv_loss = 0
+    running_feature_loss = 0
+    running_reg_loss = 0
+
+    with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:
+        for i, batch in enumerate(tepoch):
+
+            # set gradients to zero
+            optimizer.zero_grad()
+
+            # push batch to device
+            for key in batch:
+                batch[key] = batch[key].to(device)
+
+            target = batch['target'].to(device)
+            disc_target = batch[adv_target].to(device)
+
+            # calculate model output
+            output = model(batch['features'], batch['periods'])
+
+            # discriminator update
+            scores_gen = disc(output.detach())
+            scores_real = disc(disc_target.unsqueeze(1))
+
+            disc_loss = 0
+            for scale in scores_gen:
+                disc_loss += ((scale[-1]) ** 2).mean()
+                m_f = 0.9 * m_f + 0.1 * scale[-1].detach().mean().cpu().item()
+                s_f = 0.9 * s_f + 0.1 * scale[-1].detach().std().cpu().item()
+
+            for scale in scores_real:
+                disc_loss += ((1 - scale[-1]) ** 2).mean()
+                m_r = 0.9 * m_r + 0.1 * scale[-1].detach().mean().cpu().item()
+                s_r = 0.9 * s_r + 0.1 * scale[-1].detach().std().cpu().item()
+
+            disc_loss = 0.5 * disc_loss / len(scores_gen)
+            winning_chance = 0.5 * m.erfc( (m_r - m_f) / m.sqrt(2 * (s_f**2 + s_r**2)) )
+
+            disc.zero_grad()
+            disc_loss.backward()
+            optimizer_disc.step()
+
+            # generator update
+            scores_gen = disc(output)
+
+
+            # calculate loss
+            loss_reg = criterion(output.squeeze(1), target)
+
+            num_discs = len(scores_gen)
+            loss_gen = 0
+            for scale in scores_gen:
+                loss_gen += ((1 - scale[-1]) ** 2).mean() / num_discs
+
+            loss_feat = 0
+            for k in range(num_discs):
+                num_layers = len(scores_gen[k]) - 1
+                f = 4 / num_discs / num_layers
+                for l in range(num_layers):
+                    loss_feat += f * F.l1_loss(scores_gen[k][l], scores_real[k][l].detach())
+
+            model.zero_grad()
+
+            (loss_gen + lambda_feat * loss_feat + lambda_reg * loss_reg).backward()
+
+            optimizer.step()
+
+            running_adv_loss += loss_gen.detach().cpu().item()
+            running_disc_loss += disc_loss.detach().cpu().item()
+            running_feature_loss += lambda_feat * loss_feat.detach().cpu().item()
+            running_reg_loss += lambda_reg * loss_reg.detach().cpu().item()
+
+            # update status bar
+            if i % log_interval == 0:
+                tepoch.set_postfix(adv_loss=f"{running_adv_loss/(i + 1):8.7f}",
+                                   disc_loss=f"{running_disc_loss/(i + 1):8.7f}",
+                                   feat_loss=f"{running_feature_loss/(i + 1):8.7f}",
+                                   reg_loss=f"{running_reg_loss/(i + 1):8.7f}",
+                                   wc=f"{100*winning_chance:5.2f}%")
+
+
+    # save checkpoint
+    checkpoint['state_dict'] = model.state_dict()
+    checkpoint['disc_state_dict'] = disc.state_dict()
+    checkpoint['optimizer_state_dict'] = optimizer.state_dict()
+    checkpoint['disc_optimizer_state_dict'] = optimizer_disc.state_dict()
+    checkpoint['scheduler_state_dict'] = scheduler.state_dict()
+    checkpoint['torch_rng_state'] = torch.get_rng_state()
+    checkpoint['numpy_rng_state'] = np.random.get_state()
+    checkpoint['python_rng_state'] = random.getstate()
+    checkpoint['adv_loss']   = running_adv_loss/(i + 1)
+    checkpoint['disc_loss']  = running_disc_loss/(i + 1)
+    checkpoint['feature_loss'] = running_feature_loss/(i + 1)
+    checkpoint['reg_loss'] = running_reg_loss/(i + 1)
+
+
+    if inference_test:
+        print("running inference test...")
+        out = model.process(features, periods).cpu().numpy()
+        wavfile.write(os.path.join(inference_folder, f'{model_name}_epoch_{ep}.wav'), 16000, out)
+        if ref is not None:
+            mos = pesq.pesq(16000, ref, out, mode='wb')
+            print(f"MOS (PESQ): {mos}")
+
+
+    torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth'))
+    torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth'))
+
+
+    print()
+
+print('Done')
--- a/dnn/torch/osce/data/__init__.py
+++ b/dnn/torch/osce/data/__init__.py
@@ -1,30 +1,2 @@
-"""
-/* Copyright (c) 2023 Amazon
-   Written by Jan Buethe */
-/*
-   Redistribution and use in source and binary forms, with or without
-   modification, are permitted provided that the following conditions
-   are met:
-
-   - Redistributions of source code must retain the above copyright
-   notice, this list of conditions and the following disclaimer.
-
-   - Redistributions in binary form must reproduce the above copyright
-   notice, this list of conditions and the following disclaimer in the
-   documentation and/or other materials provided with the distribution.
-
-   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-"""
-
-from .silk_enhancement_set import SilkEnhancementSet
\ No newline at end of file
+from .silk_enhancement_set import SilkEnhancementSet
+from .lpcnet_vocoding_dataset import LPCNetVocodingDataset
\ No newline at end of file
--- /dev/null
+++ b/dnn/torch/osce/data/lpcnet_vocoding_dataset.py
@@ -1,0 +1,225 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+""" Dataset for LPCNet training """
+import os
+
+import yaml
+import torch
+import numpy as np
+from torch.utils.data import Dataset
+
+
+scale = 255.0/32768.0
+scale_1 = 32768.0/255.0
+def ulaw2lin(u):
+    u = u - 128
+    s = np.sign(u)
+    u = np.abs(u)
+    return s*scale_1*(np.exp(u/128.*np.log(256))-1)
+
+
+def lin2ulaw(x):
+    s = np.sign(x)
+    x = np.abs(x)
+    u = (s*(128*np.log(1+scale*x)/np.log(256)))
+    u = np.clip(128 + np.round(u), 0, 255)
+    return u
+
+
+def run_lpc(signal, lpcs, frame_length=160):
+    num_frames, lpc_order = lpcs.shape
+
+    prediction = np.concatenate(
+        [- np.convolve(signal[i * frame_length : (i + 1) * frame_length + lpc_order - 1], lpcs[i], mode='valid') for i in range(num_frames)]
+    )
+    error = signal[lpc_order :] - prediction
+
+    return prediction, error
+
+class LPCNetVocodingDataset(Dataset):
+    def __init__(self,
+                 path_to_dataset,
+                 features=['cepstrum', 'periods', 'pitch_corr'],
+                 target='signal',
+                 frames_per_sample=100,
+                 feature_history=0,
+                 feature_lookahead=0,
+                 lpc_gamma=1):
+
+        super().__init__()
+
+        # load dataset info
+        self.path_to_dataset = path_to_dataset
+        with open(os.path.join(path_to_dataset, 'info.yml'), 'r') as f:
+            dataset = yaml.load(f, yaml.FullLoader)
+
+        # dataset version
+        self.version = dataset['version']
+        if self.version == 1:
+            self.getitem = self.getitem_v1
+        elif self.version == 2:
+            self.getitem = self.getitem_v2
+        else:
+            raise ValueError(f"dataset version {self.version} unknown")
+
+        # features
+        self.feature_history      = feature_history
+        self.feature_lookahead    = feature_lookahead
+        self.frame_offset         = 2 + self.feature_history
+        self.frames_per_sample    = frames_per_sample
+        self.input_features       = features
+        self.feature_frame_layout = dataset['feature_frame_layout']
+        self.lpc_gamma            = lpc_gamma
+
+        # load feature file
+        self.feature_file = os.path.join(path_to_dataset, dataset['feature_file'])
+        self.features = np.memmap(self.feature_file, dtype=dataset['feature_dtype'])
+        self.feature_frame_length = dataset['feature_frame_length']
+
+        assert len(self.features) % self.feature_frame_length == 0
+        self.features = self.features.reshape((-1, self.feature_frame_length))
+
+        # derive number of samples is dataset
+        self.dataset_length = (len(self.features) - self.frame_offset - self.feature_lookahead - 1 - 2) // self.frames_per_sample
+
+        # signals
+        self.frame_length               = dataset['frame_length']
+        self.signal_frame_layout        = dataset['signal_frame_layout']
+        self.target                     = target
+
+        # load signals
+        self.signal_file  = os.path.join(path_to_dataset, dataset['signal_file'])
+        self.signals  = np.memmap(self.signal_file, dtype=dataset['signal_dtype'])
+        self.signal_frame_length  = dataset['signal_frame_length']
+        self.signals = self.signals.reshape((-1, self.signal_frame_length))
+        assert len(self.signals) == len(self.features) * self.frame_length
+
+
+    def __getitem__(self, index):
+        return self.getitem(index)
+
+    def getitem_v2(self, index):
+        sample = dict()
+
+        # extract features
+        frame_start = self.frame_offset + index       * self.frames_per_sample - self.feature_history
+        frame_stop  = self.frame_offset + (index + 1) * self.frames_per_sample + self.feature_lookahead
+
+        for feature in self.input_features:
+            feature_start, feature_stop = self.feature_frame_layout[feature]
+            sample[feature] = self.features[frame_start : frame_stop, feature_start : feature_stop]
+
+        # convert periods
+        if 'periods' in self.input_features:
+            sample['periods'] = (0.1 + 50 * sample['periods'] + 100).astype('int16')
+
+        signal_start = (self.frame_offset + index       * self.frames_per_sample) * self.frame_length
+        signal_stop  = (self.frame_offset + (index + 1) * self.frames_per_sample) * self.frame_length
+
+        # last_signal and signal are always expected to be there
+        sample['last_signal'] = self.signals[signal_start : signal_stop, self.signal_frame_layout['last_signal']]
+        sample['signal'] = self.signals[signal_start : signal_stop, self.signal_frame_layout['signal']]
+
+        # calculate prediction and error if lpc coefficients present and prediction not given
+        if 'lpc' in self.feature_frame_layout and 'prediction' not in self.signal_frame_layout:
+            # lpc coefficients with one frame lookahead
+            # frame positions (start one frame early for past excitation)
+            frame_start = self.frame_offset + self.frames_per_sample * index - 1
+            frame_stop  = self.frame_offset + self.frames_per_sample * (index + 1)
+
+            # feature positions
+            lpc_start, lpc_stop = self.feature_frame_layout['lpc']
+            lpc_order = lpc_stop - lpc_start
+            lpcs = self.features[frame_start : frame_stop, lpc_start : lpc_stop]
+
+            # LPC weighting
+            lpc_order = lpc_stop - lpc_start
+            weights = np.array([self.lpc_gamma ** (i + 1) for i in range(lpc_order)])
+            lpcs = lpcs * weights
+
+            # signal position (lpc_order samples as history)
+            signal_start = frame_start * self.frame_length - lpc_order + 1
+            signal_stop  = frame_stop  * self.frame_length + 1
+            noisy_signal = self.signals[signal_start : signal_stop, self.signal_frame_layout['last_signal']]
+            clean_signal = self.signals[signal_start - 1 : signal_stop - 1, self.signal_frame_layout['signal']]
+
+            noisy_prediction, noisy_error = run_lpc(noisy_signal, lpcs, frame_length=self.frame_length)
+
+            # extract signals
+            offset = self.frame_length
+            sample['prediction'] = noisy_prediction[offset : offset + self.frame_length * self.frames_per_sample]
+            sample['last_error'] = noisy_error[offset - 1 : offset - 1 + self.frame_length * self.frames_per_sample]
+            # calculate error between real signal and noisy prediction
+
+
+            sample['error'] = sample['signal'] - sample['prediction']
+
+
+        # concatenate features
+        feature_keys = [key for key in self.input_features if not key.startswith("periods")]
+        features = torch.concat([torch.FloatTensor(sample[key]) for key in feature_keys], dim=-1)
+        target  = torch.FloatTensor(sample[self.target]) / 2**15
+        periods = torch.LongTensor(sample['periods'])
+
+        return {'features' : features, 'periods' : periods, 'target' : target}
+
+    def getitem_v1(self, index):
+        sample = dict()
+
+        # extract features
+        frame_start = self.frame_offset + index       * self.frames_per_sample - self.feature_history
+        frame_stop  = self.frame_offset + (index + 1) * self.frames_per_sample + self.feature_lookahead
+
+        for feature in self.input_features:
+            feature_start, feature_stop = self.feature_frame_layout[feature]
+            sample[feature] = self.features[frame_start : frame_stop, feature_start : feature_stop]
+
+        # convert periods
+        if 'periods' in self.input_features:
+            sample['periods'] = (0.1 + 50 * sample['periods'] + 100).astype('int16')
+
+        signal_start = (self.frame_offset + index       * self.frames_per_sample) * self.frame_length
+        signal_stop  = (self.frame_offset + (index + 1) * self.frames_per_sample) * self.frame_length
+
+        # last_signal and signal are always expected to be there
+        for signal_name, index in self.signal_frame_layout.items():
+            sample[signal_name] = self.signals[signal_start : signal_stop, index]
+
+        # concatenate features
+        feature_keys = [key for key in self.input_features if not key.startswith("periods")]
+        features = torch.concat([torch.FloatTensor(sample[key]) for key in feature_keys], dim=-1)
+        signals = torch.cat([torch.LongTensor(sample[key]).unsqueeze(-1) for key in self.input_signals], dim=-1)
+        target  = torch.LongTensor(sample[self.target])
+        periods = torch.LongTensor(sample['periods'])
+
+        return {'features' : features, 'periods' : periods, 'signals' : signals, 'target' : target}
+
+    def __len__(self):
+        return self.dataset_length
--- a/dnn/torch/osce/data/silk_enhancement_set.py
+++ b/dnn/torch/osce/data/silk_enhancement_set.py
@@ -50,7 +50,7 @@
                  noisy_spec_scale='opus',
                  noisy_apply_dct=True,
                  add_offset=False,
-                 add_double_lag_acorr=False
+                 add_double_lag_acorr=False,
                  ):
 
         assert frames_per_sample % 4 == 0
@@ -75,8 +75,9 @@
         self.num_bits_smooth = np.fromfile(os.path.join(path, 'features_num_bits_smooth.f32'), dtype=np.float32)
         self.offsets = np.fromfile(os.path.join(path, 'features_offset.f32'), dtype=np.float32)
 
-        self.clean_signal = np.fromfile(os.path.join(path, 'clean_hp.s16'), dtype=np.int16)
-        self.coded_signal = np.fromfile(os.path.join(path, 'coded.s16'), dtype=np.int16)
+        self.clean_signal_hp = np.fromfile(os.path.join(path, 'clean_hp.s16'), dtype=np.int16)
+        self.clean_signal    = np.fromfile(os.path.join(path, 'clean.s16'), dtype=np.int16)
+        self.coded_signal    = np.fromfile(os.path.join(path, 'coded.s16'), dtype=np.int16)
 
         self.create_features = silk_feature_factory(no_pitch_value,
                                                     acorr_radius,
@@ -92,7 +93,7 @@
         # discard some frames to have enough signal history
         self.skip_frames = 4 * ((skip + self.history_len + 319) // 320 + 2)
 
-        num_frames = self.clean_signal.shape[0] // 80 - self.skip_frames
+        num_frames = self.clean_signal_hp.shape[0] // 80 - self.skip_frames
 
         self.len = num_frames // frames_per_sample
 
@@ -107,8 +108,9 @@
         signal_start = frame_start * self.frame_size - self.skip
         signal_stop  = frame_stop  * self.frame_size - self.skip
 
-        clean_signal = self.clean_signal[signal_start : signal_stop].astype(np.float32) / 2**15
-        coded_signal = self.coded_signal[signal_start : signal_stop].astype(np.float32) / 2**15
+        clean_signal_hp = self.clean_signal_hp[signal_start : signal_stop].astype(np.float32) / 2**15
+        clean_signal    = self.clean_signal[signal_start : signal_stop].astype(np.float32) / 2**15
+        coded_signal    = self.coded_signal[signal_start : signal_stop].astype(np.float32) / 2**15
 
         coded_signal_history = self.coded_signal[signal_start - self.history_len : signal_start].astype(np.float32) / 2**15
 
@@ -124,6 +126,7 @@
 
         if self.preemph > 0:
             clean_signal[1:] -= self.preemph * clean_signal[: -1]
+            clean_signal_hp[1:] -= self.preemph * clean_signal_hp[: -1]
             coded_signal[1:] -= self.preemph * coded_signal[: -1]
 
         num_bits        = np.repeat(self.num_bits[frame_start // 4 : frame_stop // 4], 4).astype(np.float32).reshape(-1, 1)
@@ -132,9 +135,10 @@
         numbits = np.concatenate((num_bits, num_bits_smooth), axis=-1)
 
         return {
-            'features'  : features,
-            'periods'   : periods.astype(np.int64),
-            'target'    : clean_signal.astype(np.float32),
-            'signals'   : coded_signal.reshape(-1, 1).astype(np.float32),
-            'numbits'   : numbits.astype(np.float32)
+            'features'    : features,
+            'periods'     : periods.astype(np.int64),
+            'target_orig' : clean_signal.astype(np.float32),
+            'target'      : clean_signal_hp.astype(np.float32),
+            'signals'     : coded_signal.reshape(-1, 1).astype(np.float32),
+            'numbits'     : numbits.astype(np.float32)
             }
--- /dev/null
+++ b/dnn/torch/osce/engine/vocoder_engine.py
@@ -1,0 +1,101 @@
+import torch
+from tqdm import tqdm
+import sys
+
+def train_one_epoch(model, criterion, optimizer, dataloader, device, scheduler, log_interval=10):
+
+    model.to(device)
+    model.train()
+
+    running_loss = 0
+    previous_running_loss = 0
+
+
+    with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:
+
+        for i, batch in enumerate(tepoch):
+
+            # set gradients to zero
+            optimizer.zero_grad()
+
+
+            # push batch to device
+            for key in batch:
+                batch[key] = batch[key].to(device)
+
+            target = batch['target']
+
+            # calculate model output
+            output = model(batch['features'], batch['periods'])
+
+            # calculate loss
+            if isinstance(output, list):
+                loss = torch.zeros(1, device=device)
+                for y in output:
+                    loss = loss + criterion(target, y.squeeze(1))
+                loss = loss / len(output)
+            else:
+                loss = criterion(target, output.squeeze(1))
+
+            # calculate gradients
+            loss.backward()
+
+            # update weights
+            optimizer.step()
+
+            # update learning rate
+            scheduler.step()
+
+            # update running loss
+            running_loss += float(loss.cpu())
+
+            # update status bar
+            if i % log_interval == 0:
+                tepoch.set_postfix(running_loss=f"{running_loss/(i + 1):8.7f}", current_loss=f"{(running_loss - previous_running_loss)/log_interval:8.7f}")
+                previous_running_loss = running_loss
+
+
+    running_loss /= len(dataloader)
+
+    return running_loss
+
+def evaluate(model, criterion, dataloader, device, log_interval=10):
+
+    model.to(device)
+    model.eval()
+
+    running_loss = 0
+    previous_running_loss = 0
+
+
+    with torch.no_grad():
+        with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:
+
+            for i, batch in enumerate(tepoch):
+
+
+
+                # push batch to device
+                for key in batch:
+                    batch[key] = batch[key].to(device)
+
+                target = batch['target']
+
+                # calculate model output
+                output = model(batch['features'], batch['periods'])
+
+                # calculate loss
+                loss = criterion(target, output.squeeze(1))
+
+                # update running loss
+                running_loss += float(loss.cpu())
+
+                # update status bar
+                if i % log_interval == 0:
+                    tepoch.set_postfix(running_loss=f"{running_loss/(i + 1):8.7f}", current_loss=f"{(running_loss - previous_running_loss)/log_interval:8.7f}")
+                    previous_running_loss = running_loss
+
+
+        running_loss /= len(dataloader)
+
+        return running_loss
\ No newline at end of file
--- a/dnn/torch/osce/make_default_setup.py
+++ b/dnn/torch/osce/make_default_setup.py
@@ -27,6 +27,36 @@
 */
 """
 
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import sys
 import argparse
 
 import yaml
@@ -36,12 +66,19 @@
 parser = argparse.ArgumentParser()
 
 parser.add_argument('name', type=str, help='name of default setup file')
-parser.add_argument('--model', choices=['lace', 'nolace'], help='model name', default='lace')
+parser.add_argument('--model', choices=['lace', 'nolace', 'lavoce'], help='model name', default='lace')
+parser.add_argument('--adversarial', action='store_true', help='setup for adversarial training')
 parser.add_argument('--path2dataset', type=str, help='dataset path', default=None)
 
 args = parser.parse_args()
 
-setup = setup_dict[args.model]
+key = args.model + "_adv" if args.adversarial else args.model
+
+try:
+    setup = setup_dict[key]
+except KeyError:
+    print("setup not found, adversarial training possibly not specified for model")
+    sys.exit(1)
 
 # update dataset if given
 if type(args.path2dataset) != type(None):
--- a/dnn/torch/osce/models/__init__.py
+++ b/dnn/torch/osce/models/__init__.py
@@ -29,10 +29,12 @@
 
 from .lace import LACE
 from .no_lace import NoLACE
+from .lavoce import LaVoce
+from .fd_discriminator import TFDMultiResolutionDiscriminator as FDMResDisc
 
-
-
 model_dict = {
     'lace': LACE,
-    'nolace': NoLACE
+    'nolace': NoLACE,
+    'lavoce': LaVoce,
+    'fdmresdisc': FDMResDisc,
 }
--- /dev/null
+++ b/dnn/torch/osce/models/fd_discriminator.py
@@ -1,0 +1,974 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import math as m
+import copy
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+from torch.nn.utils import weight_norm, spectral_norm
+import torchaudio
+
+from utils.spec import gen_filterbank
+
+# auxiliary functions
+
+def remove_all_weight_norms(module):
+    for m in module.modules():
+        if hasattr(m, 'weight_v'):
+            nn.utils.remove_weight_norm(m)
+
+
+def create_smoothing_kernel(h, w, gamma=1.5):
+
+    ch = h / 2 - 0.5
+    cw = w / 2 - 0.5
+
+    sh = gamma * ch
+    sw = gamma * cw
+
+    vx = ((torch.arange(h) - ch) / sh) ** 2
+    vy = ((torch.arange(w) - cw) / sw) ** 2
+    vals = vx.view(-1, 1) + vy.view(1, -1)
+    kernel = torch.exp(- vals)
+    kernel = kernel / kernel.sum()
+
+    return kernel
+
+
+def create_kernel(h, w, sh, sw):
+    # proto kernel gives disjoint partition of 1
+    proto_kernel = torch.ones((sh, sw))
+
+    # create smoothing kernel eta
+    h_eta, w_eta = h - sh + 1, w - sw + 1
+    assert h_eta > 0 and w_eta > 0
+    eta = create_smoothing_kernel(h_eta, w_eta).view(1, 1, h_eta, w_eta)
+
+    kernel0 = F.pad(proto_kernel, [w_eta - 1, w_eta - 1, h_eta - 1, h_eta - 1]).unsqueeze(0).unsqueeze(0)
+    kernel = F.conv2d(kernel0, eta)
+
+    return kernel
+
+# positional embeddings
+class FrequencyPositionalEmbedding(nn.Module):
+    def __init__(self):
+
+        super().__init__()
+
+    def forward(self, x):
+
+        N = x.size(2)
+        args = torch.arange(0, N, dtype=x.dtype, device=x.device) * torch.pi * 2 / N
+        cos = torch.cos(args).reshape(1, 1, -1, 1)
+        sin = torch.sin(args).reshape(1, 1, -1, 1)
+        zeros = torch.zeros_like(x[:, 0:1, :, :])
+
+        y = torch.cat((x, zeros + sin, zeros + cos), dim=1)
+
+        return y
+
+
+class PositionalEmbedding2D(nn.Module):
+    def __init__(self, d=5):
+
+        super().__init__()
+
+        self.d = d
+
+    def forward(self, x):
+
+        N = x.size(2)
+        M = x.size(3)
+
+        h_args = torch.arange(0, N, dtype=x.dtype, device=x.device).reshape(1, 1, -1, 1)
+        w_args = torch.arange(0, M, dtype=x.dtype, device=x.device).reshape(1, 1, 1, -1)
+        coeffs = (10000 ** (-2 * torch.arange(0, self.d, dtype=x.dtype, device=x.device) / self.d)).reshape(1, -1, 1, 1)
+
+        h_sin = torch.sin(coeffs * h_args)
+        h_cos = torch.sin(coeffs * h_args)
+        w_sin = torch.sin(coeffs * w_args)
+        w_cos = torch.sin(coeffs * w_args)
+
+        zeros = torch.zeros_like(x[:, 0:1, :, :])
+
+        y = torch.cat((x, zeros + h_sin, zeros + h_cos, zeros + w_sin, zeros + w_cos), dim=1)
+
+        return y
+
+
+# spectral discriminator base class
+class SpecDiscriminatorBase(nn.Module):
+    RECEPTIVE_FIELD_MAX_WIDTH=10000
+    def __init__(self,
+                 layers,
+                 resolution,
+                 fs=16000,
+                 freq_roi=[50, 7000],
+                 noise_gain=1e-3,
+                 fmap_start_index=0
+                 ):
+        super().__init__()
+
+
+        self.layers = nn.ModuleList(layers)
+        self.resolution = resolution
+        self.fs = fs
+        self.noise_gain = noise_gain
+        self.fmap_start_index = fmap_start_index
+
+        if fmap_start_index >= len(layers):
+            raise ValueError(f'fmap_start_index is larger than number of layers')
+
+        # filter bank for noise shaping
+        n_fft = resolution[0]
+
+        self.filterbank = nn.Parameter(
+            gen_filterbank(n_fft // 2, fs, keep_size=True),
+            requires_grad=False
+        )
+
+        # roi bins
+        f_step = fs / n_fft
+        self.start_bin = int(m.ceil(freq_roi[0] / f_step - 0.01))
+        self.stop_bin = min(int(m.floor(freq_roi[1] / f_step + 0.01)), n_fft//2 + 1)
+
+        self.init_weights()
+
+        # determine receptive field size, offsets and strides
+
+        hw = 1000
+        while True:
+            x = torch.zeros((1, hw, hw))
+            with torch.no_grad():
+                y = self.run_layer_stack(x)[-1]
+
+            pos0 = [y.size(-2) // 2, y.size(-1) // 2]
+            pos1 = [t + 1 for t in pos0]
+
+            hs0, ws0 = self._receptive_field((hw, hw), pos0)
+            hs1, ws1 = self._receptive_field((hw, hw), pos1)
+
+            h0 = hs0[1] - hs0[0] + 1
+            h1 = hs1[1] - hs1[0] + 1
+            w0 = ws0[1] - ws0[0] + 1
+            w1 = ws1[1] - ws1[0] + 1
+
+            if h0 != h1 or w0 != w1:
+                hw = 2 * hw
+            else:
+
+                # strides
+                sh = hs1[0] - hs0[0]
+                sw = ws1[0] - ws0[0]
+
+                if sh == 0 or sw == 0: continue
+
+                # offsets
+                oh = hs0[0] - sh * pos0[0]
+                ow = ws0[0] - sw * pos0[1]
+
+                # overlap factor
+                overlap = w0 / sw + h0 / sh
+
+                #print(f"{w0=} {h0=} {sw=} {sh=} {overlap=}")
+                self.receptive_field_params = {'width': [sw, ow, w0], 'height': [sh, oh, h0], 'overlap': overlap}
+
+                break
+
+            if hw > self.RECEPTIVE_FIELD_MAX_WIDTH:
+                print("warning: exceeded max size while trying to determine receptive field")
+
+        # create transposed convolutional kernel
+        #self.tconv_kernel = nn.Parameter(create_kernel(h0, w0, sw, sw), requires_grad=False)
+
+    def run_layer_stack(self, spec):
+
+        output = []
+
+        x = spec.unsqueeze(1)
+
+        for layer in self.layers:
+            x = layer(x)
+            output.append(x)
+
+        return output
+
+    def forward(self, x):
+        """ returns array with feature maps and final score at index -1 """
+
+        output = []
+
+        x = self.spectrogram(x)
+
+        output = self.run_layer_stack(x)
+
+        return output[self.fmap_start_index:]
+
+    def receptive_field(self, output_pos):
+
+        if self.receptive_field_params is not None:
+            s, o, h = self.receptive_field_params['height']
+            h_min = output_pos[0] * s + o + self.start_bin
+            h_max = h_min + h
+            h_min = max(h_min, self.start_bin)
+            h_max = min(h_max, self.stop_bin)
+
+            s, o, w = self.receptive_field_params['width']
+            w_min = output_pos[1] * s + o
+            w_max = w_min + w
+
+            return (h_min, h_max), (w_min, w_max)
+
+        else:
+            return None, None
+
+
+    def _receptive_field(self, input_dims, output_pos):
+        """ determines receptive field probabilistically via autograd (slow) """
+
+        x = torch.randn((1,) + input_dims, requires_grad=True)
+
+        # run input through layers
+        y = self.run_layer_stack(x)[-1]
+        b, c, h, w = y.shape
+
+        if output_pos[0] >= h or output_pos[1] >= w:
+            raise ValueError("position out of range")
+
+        mask = torch.zeros((b, c, h, w))
+        mask[0, 0, output_pos[0], output_pos[1]] = 1
+
+        (mask * y).sum().backward()
+
+        hs, ws = torch.nonzero(x.grad[0], as_tuple=True)
+
+        h_min, h_max = hs.min().item(), hs.max().item()
+        w_min, w_max = ws.min().item(), ws.max().item()
+
+        return [h_min, h_max], [w_min, w_max]
+
+
+
+    def init_weights(self):
+
+        for m in self.modules():
+            if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d) or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding):
+                nn.init.orthogonal_(m.weight.data)
+
+
+    def spectrogram(self, x):
+        n_fft, hop_length, win_length = self.resolution
+        x = x.squeeze(1)
+        window = getattr(torch, 'hann_window')(win_length).to(x.device)
+
+        x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length,\
+                       window=window, return_complex=True) #[B, F, T]
+        x = torch.abs(x)
+
+        # noise floor following spectral envelope
+        smoothed_x = torch.matmul(self.filterbank, x)
+        noise = torch.randn_like(x) * smoothed_x * self.noise_gain
+        x = x + noise
+
+        # frequency ROI
+        x = x[:, self.start_bin : self.stop_bin + 1, ...]
+
+        return torchaudio.functional.amplitude_to_DB(x,db_multiplier=0.0, multiplier=20,amin=1e-05,top_db=80)#torch.sqrt(x)
+
+    def grad_map(self, x):
+        self.zero_grad()
+
+        n_fft, hop_length, win_length = self.resolution
+
+        window = getattr(torch, 'hann_window')(win_length).to(x.device)
+
+        y = torch.stft(x.squeeze(1), n_fft=n_fft, hop_length=hop_length, win_length=win_length,
+                       window=window, return_complex=True) #[B, F, T]
+        y = torch.abs(y)
+
+        specgram  = torchaudio.functional.amplitude_to_DB(y,db_multiplier=0.0, multiplier=20,amin=1e-05,top_db=80)
+
+        specgram.requires_grad = True
+        specgram.retain_grad()
+
+        if specgram.grad is not None:
+            specgram.grad.zero_()
+
+        y = specgram[:, self.start_bin : self.stop_bin + 1, ...]
+
+        scores = self.run_layer_stack(y)[-1]
+
+        loss = torch.mean((1 - scores) ** 2)
+        loss.backward()
+
+        return specgram.data[0], torch.abs(specgram.grad)[0]
+
+    def relevance_map(self, x):
+
+        n_fft, hop_length, win_length = self.resolution
+        y = x.view(-1)
+        window = getattr(torch, 'hann_window')(win_length).to(x.device)
+
+        y = torch.stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length,\
+                       window=window, return_complex=True) #[B, F, T]
+        y = torch.abs(y)
+
+        specgram  = torchaudio.functional.amplitude_to_DB(y,db_multiplier=0.0, multiplier=20,amin=1e-05,top_db=80)
+
+
+        scores = self.forward(x)[-1]
+
+        sh, _, h = self.receptive_field_params['height']
+        sw, _, w = self.receptive_field_params['width']
+        kernel = create_kernel(h, w, sh, sw).float().to(scores.device)
+        with torch.no_grad():
+            pad_w = (w + sw - 1) // sw
+            pad_h = (h + sh - 1) // sh
+            padded_scores = F.pad(scores, (pad_w, pad_w, pad_h, pad_h), mode='replicate')
+            # CAVE: padding should be derived from offsets
+            rv = F.conv_transpose2d(padded_scores, kernel, bias=None, stride=(sh, sw), padding=(h//2, w//2))
+            rv = rv[..., pad_h * sh : - pad_h * sh,  pad_w * sw : -pad_w * sw]
+
+            relevance = torch.zeros_like(specgram)
+            relevance[..., self.start_bin : self.start_bin + rv.size(-2), : rv.size(-1)] = rv
+
+
+        return specgram, relevance
+
+
+    def lrp(self, x, eps=1e-9, label='both', threshold=0.5, low=None, high=None, verbose=False):
+        """ layer-wise relevance propagation (https://git.tu-berlin.de/gmontavon/lrp-tutorial) """
+
+        # ToDo: this code is highly unsafe as it assumes that layers are nn.Sequential with suitable activations
+
+        def newconv2d(layer,g):
+
+            new_layer = nn.Conv2d(layer.in_channels,
+                                  layer.out_channels,
+                                  layer.kernel_size,
+                                  stride=layer.stride,
+                                  padding=layer.padding,
+                                  dilation=layer.dilation,
+                                  groups=layer.groups)
+
+            try: new_layer.weight = nn.Parameter(g(layer.weight.data.clone()))
+            except AttributeError: pass
+
+            try: new_layer.bias   = nn.Parameter(g(layer.bias.data.clone()))
+            except AttributeError: pass
+
+            return new_layer
+
+        bounds = {
+            64: [-85.82449722290039, 2.1755014657974243],
+            128: [-84.49211349487305, 3.5078893899917607],
+            256: [-80.33127822875977, 7.6687201976776125],
+            512: [-73.79328079223633, 14.20672025680542],
+            1024: [-67.59239501953125, 20.40760498046875],
+            2048: [-62.31902580261231, 25.680974197387698],
+        }
+
+        nfft = self.resolution[0]
+        if low is None: low = bounds[nfft][0]
+        if high is None: high = bounds[nfft][1]
+
+        remove_all_weight_norms(self)
+
+        for p in self.parameters():
+            if p.grad is not None:
+                p.grad.zero_()
+
+        num_layers = len(self.layers)
+        X = self.spectrogram(x). detach()
+
+
+        # forward pass
+        A = [X.unsqueeze(1)] + [None] * len(self.layers)
+
+        for i in range(num_layers - 1):
+            A[i + 1] = self.layers[i](A[i])
+
+        # initial relevance is last layer without activation
+        r = A[-2]
+        last_layer_rs = [r]
+        layer = self.layers[-1]
+        for sublayer in list(layer)[:-1]:
+            r = sublayer(r)
+            last_layer_rs.append(r)
+
+
+        mask = torch.zeros_like(r)
+        mask.requires_grad_(False)
+        if verbose:
+            print(r.min(), r.max())
+        if label in {'both', 'fake'}:
+            mask[r < -threshold] = 1
+        if label in {'both', 'real'}:
+            mask[r > threshold] = 1
+        r = r * mask
+
+        # backward pass
+        R = [None] * num_layers + [r]
+
+        for l in range(1, num_layers)[::-1]:
+            A[l] = (A[l]).data.requires_grad_(True)
+
+            layer = nn.Sequential(*(list(self.layers[l])[:-1]))
+            z = layer(A[l]) + eps
+            s = (R[l+1] / z).data
+            (z*s).sum().backward()
+            c = A[l].grad
+            R[l] = (A[l] * c).data
+
+        # first layer
+        A[0] = (A[0].data).requires_grad_(True)
+
+        Xl = (torch.zeros_like(A[0].data) + low).requires_grad_(True)
+        Xh = (torch.zeros_like(A[0].data) + high).requires_grad_(True)
+
+        if len(list(self.layers)) > 2:
+            # unsafe way to check for embedding layer
+            embed = list(self.layers[0])[0]
+            conv  = list(self.layers[0])[1]
+
+            layer = nn.Sequential(embed, conv)
+            layerl = nn.Sequential(embed, newconv2d(conv, lambda p: p.clamp(min=0)))
+            layerh = nn.Sequential(embed, newconv2d(conv, lambda p: p.clamp(max=0)))
+
+        else:
+            layer = list(self.layers[0])[0]
+            layerl = newconv2d(layer, lambda p: p.clamp(min=0))
+            layerh = newconv2d(layer, lambda p: p.clamp(max=0))
+
+
+        z = layer(A[0])
+        z -= layerl(Xl) + layerh(Xh)
+        s = (R[1] / z).data
+        (z * s).sum().backward()
+        c, cp, cm = A[0].grad, Xl.grad, Xh.grad
+
+        R[0] = (A[0] * c + Xl * cp + Xh * cm)
+        #R[0] = (A[0] * c).data
+
+        return X, R[0].mean(dim=1)
+
+
+
+
+
+
+
+
+
+
+def create_3x3_conv_plan(num_layers : int,
+                         f_stretch : int,
+                         f_down : int,
+                         t_stretch : int,
+                         t_down : int
+                         ):
+
+
+    """ creates a stride, dilation, padding plan for a 2d conv network
+
+    Args:
+        num_layers (int): number of layers
+        f_stretch (int): log_2 of stretching factor along frequency axis
+        f_down (int): log_2 of downsampling factor along frequency axis
+        t_stretch (int): log_2 of stretching factor along time axis
+        t_down (int): log_2 of downsampling factor along time axis
+
+    Returns:
+        list(list(tuple)): list containing entries [(stride_t, stride_f), (dilation_t, dilation_f), (padding_t, padding_f)]
+    """
+
+    assert num_layers > 0 and t_stretch >= 0 and t_down >= 0 and f_stretch >= 0 and f_down >= 0
+    assert f_stretch < num_layers and t_stretch < num_layers
+
+    def process_dimension(n_layers, stretch, down):
+
+        stack_layers = n_layers - 1
+
+        stride_layers = min(min(down, stretch) , stack_layers)
+        dilation_layers = max(min(stack_layers - stride_layers - 1, stretch - stride_layers), 0)
+        final_stride = 2 ** (max(down - stride_layers, 0))
+
+        final_dilation = 1
+        if stride_layers < stack_layers and stretch - stride_layers - dilation_layers > 0:
+                final_dilation = 2
+
+        strides, dilations, paddings = [], [], []
+        processed_layers = 0
+        current_dilation = 1
+
+        for _ in range(stride_layers):
+            # increase receptive field and downsample via stride = 2
+            strides.append(2)
+            dilations.append(1)
+            paddings.append(1)
+            processed_layers += 1
+
+        if processed_layers < stack_layers:
+            strides.append(1)
+            dilations.append(1)
+            paddings.append(1)
+            processed_layers += 1
+
+        for _ in range(dilation_layers):
+            # increase receptive field via dilation = 2
+            strides.append(1)
+            current_dilation *= 2
+            dilations.append(current_dilation)
+            paddings.append(current_dilation)
+            processed_layers += 1
+
+        while processed_layers < n_layers - 1:
+            # fill up with std layers
+            strides.append(1)
+            dilations.append(current_dilation)
+            paddings.append(current_dilation)
+            processed_layers += 1
+
+        # final layer
+        strides.append(final_stride)
+        current_dilation * final_dilation
+        dilations.append(current_dilation)
+        paddings.append(current_dilation)
+        processed_layers += 1
+
+        assert processed_layers == n_layers
+
+        return strides, dilations, paddings
+
+    t_strides, t_dilations, t_paddings = process_dimension(num_layers, t_stretch, t_down)
+    f_strides, f_dilations, f_paddings = process_dimension(num_layers, f_stretch, f_down)
+
+    plan = []
+
+    for i in range(num_layers):
+        plan.append([
+            (f_strides[i], t_strides[i]),
+            (f_dilations[i], t_dilations[i]),
+            (f_paddings[i], t_paddings[i]),
+            ])
+
+    return plan
+
+
+class DiscriminatorExperimental(SpecDiscriminatorBase):
+
+    def __init__(self,
+                 resolution,
+                 fs=16000,
+                 freq_roi=[50, 7400],
+                 noise_gain=0,
+                 num_channels=16,
+                 max_channels=512,
+                 num_layers=5,
+                 use_spectral_norm=False):
+
+        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+
+        self.num_channels = num_channels
+        self.num_channels_max = max_channels
+        self.num_layers = num_layers
+
+        layers = []
+        stride = (2, 1)
+        padding= (1, 1)
+        in_channels = 1 + 2
+        out_channels = self.num_channels
+        for _ in range(self.num_layers):
+            layers.append(
+                nn.Sequential(
+                    FrequencyPositionalEmbedding(),
+                    norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
+                    nn.ReLU(inplace=True)
+                )
+            )
+            in_channels = out_channels + 2
+            out_channels = min(2 * out_channels, self.num_channels_max)
+
+        layers.append(
+            nn.Sequential(
+                FrequencyPositionalEmbedding(),
+                norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding)),
+                nn.Sigmoid()
+            )
+        )
+
+        super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
+
+        # bias biases
+        bias_val = 0.1
+        with torch.no_grad():
+            for name, weight in self.named_parameters():
+                if 'bias' in name:
+                    weight = weight + bias_val
+
+
+configs = {
+    'f_down': {
+        'stretch' : {
+            64 : (0, 0),
+            128: (1, 0),
+            256: (2, 0),
+            512: (3, 0),
+            1024: (4, 0),
+            2048: (5, 0)
+        },
+        'down' : {
+            64 : (0, 0),
+            128: (1, 0),
+            256: (2, 0),
+            512: (3, 0),
+            1024: (4, 0),
+            2048: (5, 0)
+        }
+    },
+    'ft_down': {
+        'stretch' : {
+            64 : (0, 4),
+            128: (1, 3),
+            256: (2, 2),
+            512: (3, 1),
+            1024: (4, 0),
+            2048: (5, 0)
+        },
+        'down' : {
+            64 : (0, 4),
+            128: (1, 3),
+            256: (2, 2),
+            512: (3, 1),
+            1024: (4, 0),
+            2048: (5, 0)
+        }
+    },
+    'dilated': {
+        'stretch' : {
+            64 : (0, 4),
+            128: (1, 3),
+            256: (2, 2),
+            512: (3, 1),
+            1024: (4, 0),
+            2048: (5, 0)
+        },
+        'down' : {
+            64 : (0, 0),
+            128: (0, 0),
+            256: (0, 0),
+            512: (0, 0),
+            1024: (0, 0),
+            2048: (0, 0)
+        }
+    },
+    'mixed': {
+        'stretch' : {
+            64 : (0, 4),
+            128: (1, 3),
+            256: (2, 2),
+            512: (3, 1),
+            1024: (4, 0),
+            2048: (5, 0)
+        },
+        'down' : {
+            64 : (0, 0),
+            128: (1, 0),
+            256: (2, 0),
+            512: (3, 0),
+            1024: (4, 0),
+            2048: (5, 0)
+        }
+    },
+}
+
+
+class DiscriminatorMagFree(SpecDiscriminatorBase):
+
+    def __init__(self,
+                 resolution,
+                 fs=16000,
+                 freq_roi=[50, 7400],
+                 noise_gain=0,
+                 num_channels=16,
+                 max_channels=256,
+                 num_layers=5,
+                 use_spectral_norm=False,
+                 design=None):
+
+        if design is None:
+            raise ValueError('error: arch required in DiscriminatorMagFree')
+
+        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+
+        stretch = configs[design]['stretch'][resolution[0]]
+        down = configs[design]['down'][resolution[0]]
+
+        self.num_channels = num_channels
+        self.num_channels_max = max_channels
+        self.num_layers = num_layers
+        self.stretch = stretch
+        self.down = down
+
+        layers = []
+        plan = create_3x3_conv_plan(num_layers + 1, stretch[0], down[0], stretch[1], down[1])
+        in_channels = 1 + 2
+        out_channels = self.num_channels
+        for i in range(self.num_layers):
+            layers.append(
+                nn.Sequential(
+                    FrequencyPositionalEmbedding(),
+                    norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=plan[i][0], dilation=plan[i][1], padding=plan[i][2])),
+                    nn.ReLU(inplace=True)
+                )
+            )
+            in_channels = out_channels + 2
+            # product over strides
+            channel_factor = plan[i][0][0] * plan[i][0][1]
+            out_channels = min(channel_factor * out_channels, self.num_channels_max)
+
+        layers.append(
+            nn.Sequential(
+                FrequencyPositionalEmbedding(),
+                norm_f(nn.Conv2d(in_channels, 1, (3, 3), stride=plan[-1][0], dilation=plan[-1][1], padding=plan[-1][2])),
+                nn.Sigmoid()
+            )
+        )
+
+
+
+        # for layer in layers:
+        #     print(layer)
+
+        # print("end\n\n")
+
+        super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
+
+        # bias biases
+        bias_val = 0.1
+        with torch.no_grad():
+            for name, weight in self.named_parameters():
+                if 'bias' in name:
+                    weight = weight + bias_val
+
+class DiscriminatorMagFreqPosition(SpecDiscriminatorBase):
+
+    def __init__(self,
+                 resolution,
+                 fs=16000,
+                 freq_roi=[50, 7400],
+                 noise_gain=0,
+                 num_channels=16,
+                 max_channels=512,
+                 num_layers=5,
+                 use_spectral_norm=False):
+
+        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+
+        self.num_channels = num_channels
+        self.num_channels_max = max_channels
+        self.num_layers = num_layers
+
+        layers = []
+        stride = (2, 1)
+        padding= (1, 1)
+        in_channels = 1 + 2
+        out_channels = self.num_channels
+        for _ in range(self.num_layers):
+            layers.append(
+                nn.Sequential(
+                    FrequencyPositionalEmbedding(),
+                    norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
+                    nn.LeakyReLU(0.2, inplace=True)
+                )
+            )
+            in_channels = out_channels + 2
+            out_channels = min(2 * out_channels, self.num_channels_max)
+
+        layers.append(
+            nn.Sequential(
+                FrequencyPositionalEmbedding(),
+                norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding))
+            )
+        )
+
+        super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
+
+
+
+class DiscriminatorMag2dPositional(SpecDiscriminatorBase):
+
+    def __init__(self,
+                 resolution,
+                 fs=16000,
+                 freq_roi=[50, 7400],
+                 noise_gain=0,
+                 num_channels=16,
+                 max_channels=512,
+                 num_layers=5,
+                 d=5,
+                 use_spectral_norm=False):
+
+        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+        self.resolution = resolution
+        self.num_channels = num_channels
+        self.num_channels_max = max_channels
+        self.num_layers = num_layers
+        self.d = d
+        embedding_dim = 4 * d
+
+
+        layers = []
+        stride = (2, 2)
+        padding= (1, 1)
+        in_channels = 1 + embedding_dim
+        out_channels = self.num_channels
+        for _ in range(self.num_layers):
+            layers.append(
+                nn.Sequential(
+                    PositionalEmbedding2D(d),
+                    norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
+                    nn.LeakyReLU(0.2, inplace=True)
+                )
+            )
+            in_channels = out_channels + embedding_dim
+            out_channels = min(2 * out_channels, self.num_channels_max)
+
+
+        layers.append(
+            nn.Sequential(
+                PositionalEmbedding2D(),
+                norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding))
+            )
+        )
+
+        super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
+
+
+
+class DiscriminatorMag(SpecDiscriminatorBase):
+    def __init__(self,
+                 resolution,
+                 fs=16000,
+                 freq_roi=[50, 7400],
+                 noise_gain=0,
+                 num_channels=32,
+                 num_layers=5,
+                 use_spectral_norm=False):
+
+        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+
+        self.num_channels = num_channels
+        self.num_layers = num_layers
+
+        layers = []
+        stride = (1, 1)
+        padding= (1, 1)
+        in_channels = 1
+        out_channels = self.num_channels
+        for _ in range(self.num_layers):
+            layers.append(
+                nn.Sequential(
+                    norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
+                    nn.LeakyReLU(0.2, inplace=True)
+                )
+            )
+            in_channels = out_channels
+
+        layers.append(norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding)))
+
+        super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
+
+
+discriminators = {
+    'mag': DiscriminatorMag,
+    'freqpos': DiscriminatorMagFreqPosition,
+    '2dpos': DiscriminatorMag2dPositional,
+    'experimental': DiscriminatorExperimental,
+    'free': DiscriminatorMagFree
+}
+
+class TFDMultiResolutionDiscriminator(torch.nn.Module):
+    def __init__(self,
+                 fft_sizes_16k=[64, 128, 256, 512, 1024, 2048],
+                 architecture='mag',
+                 fs=16000,
+                 freq_roi=[50, 7400],
+                 noise_gain=0,
+                 use_spectral_norm=False,
+                 **kwargs):
+
+        super().__init__()
+
+
+        fft_sizes = [int(round(fft_size_16k * fs / 16000)) for fft_size_16k in fft_sizes_16k]
+
+        resolutions = [[n_fft, n_fft // 4, n_fft] for n_fft in fft_sizes]
+
+
+        Disc = discriminators[architecture]
+
+        discs = [Disc(resolutions[i], fs=fs, freq_roi=freq_roi, noise_gain=noise_gain, use_spectral_norm=use_spectral_norm, **kwargs) for i in range(len(resolutions))]
+
+        self.discriminators = nn.ModuleList(discs)
+
+    def forward(self, y):
+        outputs = []
+
+        for  disc in self.discriminators:
+            outputs.append(disc(y))
+
+        return outputs
+
+
+class FWGAN_disc_wrapper(nn.Module):
+    def __init__(self, disc):
+        super().__init__()
+
+        self.disc = disc
+
+    def forward(self, y, y_hat):
+
+        out_real = self.disc(y)
+        out_fake = self.disc(y_hat)
+
+        y_d_rs = []
+        y_d_gs = []
+        fmap_rs = []
+        fmap_gs = []
+
+        for y_real, y_fake in zip(out_real, out_fake):
+            y_d_rs.append(y_real[-1])
+            y_d_gs.append(y_fake[-1])
+            fmap_rs.append(y_real[:-1])
+            fmap_gs.append(y_fake[:-1])
+
+        return y_d_rs, y_d_gs, fmap_rs, fmap_gs
--- /dev/null
+++ b/dnn/torch/osce/models/lavoce.py
@@ -1,0 +1,254 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+
+import numpy as np
+
+from utils.layers.limited_adaptive_comb1d import LimitedAdaptiveComb1d
+from utils.layers.limited_adaptive_conv1d import LimitedAdaptiveConv1d
+from utils.layers.td_shaper import TDShaper
+from utils.layers.noise_shaper import NoiseShaper
+from utils.complexity import _conv1d_flop_count
+from utils.endoscopy import write_data
+
+from models.nns_base import NNSBase
+from models.lpcnet_feature_net import LPCNetFeatureNet
+from .scale_embedding import ScaleEmbedding
+
+class LaVoce(nn.Module):
+    """ Linear-Adaptive VOCodEr """
+    FEATURE_FRAME_SIZE=160
+    FRAME_SIZE=80
+
+    def __init__(self,
+                 num_features=20,
+                 pitch_embedding_dim=64,
+                 cond_dim=256,
+                 pitch_max=300,
+                 kernel_size=15,
+                 preemph=0.85,
+                 comb_gain_limit_db=-6,
+                 global_gain_limits_db=[-6, 6],
+                 conv_gain_limits_db=[-6, 6],
+                 norm_p=2,
+                 avg_pool_k=4,
+                 pulses=False):
+
+        super().__init__()
+
+
+        self.num_features           = num_features
+        self.cond_dim               = cond_dim
+        self.pitch_max              = pitch_max
+        self.pitch_embedding_dim    = pitch_embedding_dim
+        self.kernel_size            = kernel_size
+        self.preemph                = preemph
+        self.pulses                 = pulses
+
+        assert self.FEATURE_FRAME_SIZE % self.FRAME_SIZE == 0
+        self.upsamp_factor =  self.FEATURE_FRAME_SIZE // self.FRAME_SIZE
+
+        # pitch embedding
+        self.pitch_embedding = nn.Embedding(pitch_max + 1, pitch_embedding_dim)
+
+        # feature net
+        self.feature_net = LPCNetFeatureNet(num_features + pitch_embedding_dim, cond_dim, self.upsamp_factor)
+
+        # noise shaper
+        self.noise_shaper = NoiseShaper(cond_dim, self.FRAME_SIZE)
+
+        # comb filters
+        left_pad = self.kernel_size // 2
+        right_pad = self.kernel_size - 1 - left_pad
+        self.cf1 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=40, use_bias=False, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)
+        self.cf2 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=40, use_bias=False, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)
+
+
+        self.af_prescale = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
+        self.af_mix = LimitedAdaptiveConv1d(2, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
+
+        # spectral shaping
+        self.af1 = LimitedAdaptiveConv1d(1, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
+
+        # non-linear transforms
+        self.tdshape1 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, innovate=True)
+        self.tdshape2 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k)
+        self.tdshape3 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k)
+
+        # combinators
+        self.af2 = LimitedAdaptiveConv1d(2, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
+        self.af3 = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
+        self.af4 = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
+
+        # feature transforms
+        self.post_cf1 = nn.Conv1d(cond_dim, cond_dim, 2)
+        self.post_cf2 = nn.Conv1d(cond_dim, cond_dim, 2)
+        self.post_af1 = nn.Conv1d(cond_dim, cond_dim, 2)
+        self.post_af2 = nn.Conv1d(cond_dim, cond_dim, 2)
+        self.post_af3 = nn.Conv1d(cond_dim, cond_dim, 2)
+
+
+    def create_phase_signals(self, periods, pulses=False):
+
+        batch_size = periods.size(0)
+        progression = torch.arange(1, self.FRAME_SIZE + 1, dtype=periods.dtype, device=periods.device).view((1, -1))
+        progression = torch.repeat_interleave(progression, batch_size, 0)
+
+        phase0 = torch.zeros(batch_size, dtype=periods.dtype, device=periods.device).unsqueeze(-1)
+        chunks = []
+        for sframe in range(periods.size(1)):
+            f = (2.0 * torch.pi / periods[:, sframe]).unsqueeze(-1)
+
+            if pulses:
+                alpha = torch.cos(f)
+                chunk_sin = torch.sin(f  * progression + phase0).view(batch_size, 1, self.FRAME_SIZE)
+                pulse_a = torch.relu(chunk_sin - alpha) / (1 - alpha)
+                pulse_b = torch.relu(-chunk_sin - alpha) / (1 - alpha)
+
+                chunk = torch.cat((pulse_a, pulse_b), dim = 1)
+            else:
+                chunk_sin = torch.sin(f  * progression + phase0).view(batch_size, 1, self.FRAME_SIZE)
+                chunk_cos = torch.cos(f  * progression + phase0).view(batch_size, 1, self.FRAME_SIZE)
+
+                chunk = torch.cat((chunk_sin, chunk_cos), dim = 1)
+
+            phase0 = phase0 + self.FRAME_SIZE * f
+
+            chunks.append(chunk)
+
+        phase_signals = torch.cat(chunks, dim=-1)
+
+        return phase_signals
+
+    def flop_count(self, rate=16000, verbose=False):
+
+        frame_rate = rate / self.FRAME_SIZE
+
+        # feature net
+        feature_net_flops = self.feature_net.flop_count(frame_rate)
+        comb_flops = self.cf1.flop_count(rate) + self.cf2.flop_count(rate)
+        af_flops = self.af1.flop_count(rate) + self.af2.flop_count(rate) + self.af3.flop_count(rate) + self.af4.flop_count(rate) + self.af_prescale.flop_count(rate) + self.af_mix.flop_count(rate)
+        feature_flops = (_conv1d_flop_count(self.post_cf1, frame_rate) + _conv1d_flop_count(self.post_cf2, frame_rate)
+                         + _conv1d_flop_count(self.post_af1, frame_rate) + _conv1d_flop_count(self.post_af2, frame_rate) + _conv1d_flop_count(self.post_af3, frame_rate))
+
+        if verbose:
+            print(f"feature net: {feature_net_flops / 1e6} MFLOPS")
+            print(f"comb filters: {comb_flops / 1e6} MFLOPS")
+            print(f"adaptive conv: {af_flops / 1e6} MFLOPS")
+            print(f"feature transforms: {feature_flops / 1e6} MFLOPS")
+
+        return feature_net_flops + comb_flops + af_flops + feature_flops
+
+    def feature_transform(self, f, layer):
+        f = f.permute(0, 2, 1)
+        f = F.pad(f, [1, 0])
+        f = torch.tanh(layer(f))
+        return f.permute(0, 2, 1)
+
+    def forward(self, features, periods, debug=False):
+
+        periods         = periods.squeeze(-1)
+        pitch_embedding = self.pitch_embedding(periods)
+
+        full_features = torch.cat((features, pitch_embedding), dim=-1)
+        cf = self.feature_net(full_features)
+
+        # upsample periods
+        periods = torch.repeat_interleave(periods, self.upsamp_factor, 1)
+
+        # pre-net
+        ref_phase = torch.tanh(self.create_phase_signals(periods))
+        x = self.af_prescale(ref_phase, cf)
+        noise = self.noise_shaper(cf)
+        y = self.af_mix(torch.cat((x, noise), dim=1), cf)
+
+        if debug:
+            ch0 = y[0,0,:].detach().cpu().numpy()
+            ch1 = y[0,1,:].detach().cpu().numpy()
+            ch0 = (2**15 * ch0 / np.max(ch0)).astype(np.int16)
+            ch1 = (2**15 * ch1 / np.max(ch1)).astype(np.int16)
+            write_data('prior_channel0', ch0, 16000)
+            write_data('prior_channel1', ch1, 16000)
+
+        # temporal shaping + innovating
+        y1 = y[:, 0:1, :]
+        y2 = self.tdshape1(y[:, 1:2, :], cf)
+        y = torch.cat((y1, y2), dim=1)
+        y = self.af2(y, cf, debug=debug)
+        cf = self.feature_transform(cf, self.post_af2)
+
+        y1 = y[:, 0:1, :]
+        y2 = self.tdshape2(y[:, 1:2, :], cf)
+        y = torch.cat((y1, y2), dim=1)
+        y = self.af3(y, cf, debug=debug)
+        cf = self.feature_transform(cf, self.post_af3)
+
+        # spectral shaping
+        y = self.cf1(y, cf, periods, debug=debug)
+        cf = self.feature_transform(cf, self.post_cf1)
+
+        y = self.cf2(y, cf, periods, debug=debug)
+        cf = self.feature_transform(cf, self.post_cf2)
+
+        y = self.af1(y, cf, debug=debug)
+        cf = self.feature_transform(cf, self.post_af1)
+
+        # final temporal env adjustment
+        y1 = y[:, 0:1, :]
+        y2 = self.tdshape3(y[:, 1:2, :], cf)
+        y = torch.cat((y1, y2), dim=1)
+        y = self.af4(y, cf, debug=debug)
+
+        return y
+
+    def process(self, features, periods, debug=False):
+
+        self.eval()
+        device = next(iter(self.parameters())).device
+        with torch.no_grad():
+
+            # run model
+            f = features.unsqueeze(0).to(device)
+            p = periods.unsqueeze(0).to(device)
+
+            y = self.forward(f, p, debug=debug).squeeze()
+
+            # deemphasis
+            if self.preemph > 0:
+                for i in range(len(y) - 1):
+                    y[i + 1] += self.preemph * y[i]
+
+            # clip to valid range
+            out = torch.clip((2**15) * y, -2**15, 2**15 - 1).short()
+
+        return out
\ No newline at end of file
--- /dev/null
+++ b/dnn/torch/osce/models/lpcnet_feature_net.py
@@ -1,0 +1,91 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+
+from utils.complexity import _conv1d_flop_count
+
+class LPCNetFeatureNet(nn.Module):
+
+    def __init__(self,
+                 feature_dim=84,
+                 num_channels=256,
+                 upsamp_factor=2,
+                 lookahead=True):
+
+        super().__init__()
+
+        self.feature_dim = feature_dim
+        self.num_channels = num_channels
+        self.upsamp_factor = upsamp_factor
+        self.lookahead = lookahead
+
+        self.conv1 = nn.Conv1d(feature_dim, num_channels, 3)
+        self.conv2 = nn.Conv1d(num_channels, num_channels, 3)
+
+        self.gru = nn.GRU(num_channels, num_channels, batch_first=True)
+
+        self.tconv = nn.ConvTranspose1d(num_channels, num_channels, upsamp_factor, upsamp_factor)
+
+    def flop_count(self, rate=100):
+        count = 0
+        for conv in self.conv1, self.conv2, self.tconv:
+            count += _conv1d_flop_count(conv, rate)
+
+        count += 2 * (3 * self.gru.input_size * self.gru.hidden_size + 3 * self.gru.hidden_size * self.gru.hidden_size) * rate
+
+        return count
+
+
+    def forward(self, features, state=None):
+        """ features shape: (batch_size, num_frames, feature_dim) """
+
+        batch_size = features.size(0)
+
+        if state is None:
+            state = torch.zeros((1, batch_size, self.num_channels), device=features.device)
+
+
+        features = features.permute(0, 2, 1)
+        if self.lookahead:
+            c = torch.tanh(self.conv1(F.pad(features, [1, 1])))
+            c = torch.tanh(self.conv2(F.pad(c, [2, 0])))
+        else:
+            c = torch.tanh(self.conv1(F.pad(features, [2, 0])))
+            c = torch.tanh(self.conv2(F.pad(c, [2, 0])))
+
+        c = torch.tanh(self.tconv(c))
+
+        c = c.permute(0, 2, 1)
+
+        c, _ = self.gru(c, state)
+
+        return c
\ No newline at end of file
--- a/dnn/torch/osce/models/no_lace.py
+++ b/dnn/torch/osce/models/no_lace.py
@@ -1,3 +1,31 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
 
 import torch
 from torch import nn
--- /dev/null
+++ b/dnn/torch/osce/test_vocoder.py
@@ -1,0 +1,103 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import argparse
+
+import torch
+
+from scipy.io import wavfile
+
+from time import time
+
+
+from models import model_dict
+from utils.lpcnet_features import load_lpcnet_features
+from utils import endoscopy
+
+debug = False
+if debug:
+    args = type('dummy', (object,),
+    {
+        'input'         : 'testitems/all_0_orig.se',
+        'checkpoint'    : 'testout/checkpoints/checkpoint_epoch_5.pth',
+        'output'        : 'out.wav',
+    })()
+else:
+    parser = argparse.ArgumentParser()
+
+    parser.add_argument('input', type=str, help='path to input features')
+    parser.add_argument('checkpoint', type=str, help='checkpoint file')
+    parser.add_argument('output', type=str, help='output file')
+    parser.add_argument('--debug', action='store_true', help='enables debug output')
+
+
+    args = parser.parse_args()
+
+
+torch.set_num_threads(2)
+
+input_folder = args.input
+checkpoint_file = args.checkpoint
+
+
+output_file = args.output
+if not output_file.endswith('.wav'):
+    output_file += '.wav'
+
+checkpoint = torch.load(checkpoint_file, map_location="cpu")
+
+# check model
+if not 'name' in checkpoint['setup']['model']:
+    print(f'warning: did not find model name entry in setup, using pitchpostfilter per default')
+    model_name = 'pitchpostfilter'
+else:
+    model_name = checkpoint['setup']['model']['name']
+
+model = model_dict[model_name](*checkpoint['setup']['model']['args'], **checkpoint['setup']['model']['kwargs'])
+
+model.load_state_dict(checkpoint['state_dict'])
+
+# generate model input
+setup = checkpoint['setup']
+testdata = load_lpcnet_features(input_folder)
+features = testdata['features']
+periods = testdata['periods']
+
+if args.debug:
+    endoscopy.init()
+
+start = time()
+output = model.process(features, periods, debug=args.debug)
+elapsed = time() - start
+print(f"[timing] inference took {elapsed * 1000} ms")
+
+wavfile.write(output_file, 16000, output.cpu().numpy())
+
+if args.debug:
+    endoscopy.close()
--- /dev/null
+++ b/dnn/torch/osce/train_vocoder.py
@@ -1,0 +1,287 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import os
+import argparse
+import sys
+
+import yaml
+
+try:
+    import git
+    has_git = True
+except:
+    has_git = False
+
+import torch
+from torch.optim.lr_scheduler import LambdaLR
+
+from scipy.io import wavfile
+
+import pesq
+
+from data import LPCNetVocodingDataset
+from models import model_dict
+from engine.vocoder_engine import train_one_epoch, evaluate
+
+
+from utils.lpcnet_features import load_lpcnet_features
+from utils.misc import count_parameters
+
+from losses.stft_loss import MRSTFTLoss, MRLogMelLoss
+
+
+parser = argparse.ArgumentParser()
+
+parser.add_argument('setup', type=str, help='setup yaml file')
+parser.add_argument('output', type=str, help='output path')
+parser.add_argument('--device', type=str, help='compute device', default=None)
+parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint', default=None)
+parser.add_argument('--test-features', type=str, help='path to features for testing', default=None)
+parser.add_argument('--no-redirect', action='store_true', help='disables re-direction of stdout')
+
+args = parser.parse_args()
+
+
+torch.set_num_threads(4)
+
+with open(args.setup, 'r') as f:
+    setup = yaml.load(f.read(), yaml.FullLoader)
+
+checkpoint_prefix = 'checkpoint'
+output_prefix = 'output'
+setup_name = 'setup.yml'
+output_file='out.txt'
+
+
+# check model
+if not 'name' in setup['model']:
+    print(f'warning: did not find model entry in setup, using default PitchPostFilter')
+    model_name = 'pitchpostfilter'
+else:
+    model_name = setup['model']['name']
+
+# prepare output folder
+if os.path.exists(args.output):
+    print("warning: output folder exists")
+
+    reply = input('continue? (y/n): ')
+    while reply not in {'y', 'n'}:
+        reply = input('continue? (y/n): ')
+
+    if reply == 'n':
+        os._exit()
+else:
+    os.makedirs(args.output, exist_ok=True)
+
+checkpoint_dir = os.path.join(args.output, 'checkpoints')
+os.makedirs(checkpoint_dir, exist_ok=True)
+
+# add repo info to setup
+if has_git:
+    working_dir = os.path.split(__file__)[0]
+    try:
+        repo = git.Repo(working_dir)
+        setup['repo'] = dict()
+        hash = repo.head.object.hexsha
+        urls = list(repo.remote().urls)
+        is_dirty = repo.is_dirty()
+
+        if is_dirty:
+            print("warning: repo is dirty")
+
+        setup['repo']['hash'] = hash
+        setup['repo']['urls'] = urls
+        setup['repo']['dirty'] = is_dirty
+    except:
+        has_git = False
+
+# dump setup
+with open(os.path.join(args.output, setup_name), 'w') as f:
+    yaml.dump(setup, f)
+
+ref = None
+# prepare inference test if wanted
+inference_test = False
+if type(args.test_features) != type(None):
+    test_features = load_lpcnet_features(args.test_features)
+    features = test_features['features']
+    periods = test_features['periods']
+    inference_folder = os.path.join(args.output, 'inference_test')
+    os.makedirs(inference_folder, exist_ok=True)
+    inference_test = True
+
+
+# training parameters
+batch_size      = setup['training']['batch_size']
+epochs          = setup['training']['epochs']
+lr              = setup['training']['lr']
+lr_decay_factor = setup['training']['lr_decay_factor']
+
+# load training dataset
+data_config = setup['data']
+data = LPCNetVocodingDataset(setup['dataset'], **data_config)
+
+# load validation dataset if given
+if 'validation_dataset' in setup:
+    validation_data = LPCNetVocodingDataset(setup['validation_dataset'], **data_config)
+
+    validation_dataloader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, drop_last=True, num_workers=8)
+
+    run_validation = True
+else:
+    run_validation = False
+
+# create model
+model = model_dict[model_name](*setup['model']['args'], **setup['model']['kwargs'])
+
+if args.initial_checkpoint is not None:
+    print(f"loading state dict from {args.initial_checkpoint}...")
+    chkpt = torch.load(args.initial_checkpoint, map_location='cpu')
+    model.load_state_dict(chkpt['state_dict'])
+
+# set compute device
+if type(args.device) == type(None):
+    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+else:
+    device = torch.device(args.device)
+
+# push model to device
+model.to(device)
+
+# dataloader
+dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=8)
+
+# optimizer is introduced to trainable parameters
+parameters = [p for p in model.parameters() if p.requires_grad]
+optimizer = torch.optim.Adam(parameters, lr=lr)
+
+# learning rate scheduler
+scheduler = LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x))
+
+# loss
+w_l1 = setup['training']['loss']['w_l1']
+w_lm = setup['training']['loss']['w_lm']
+w_slm = setup['training']['loss']['w_slm']
+w_sc = setup['training']['loss']['w_sc']
+w_logmel = setup['training']['loss']['w_logmel']
+w_wsc = setup['training']['loss']['w_wsc']
+w_xcorr = setup['training']['loss']['w_xcorr']
+w_sxcorr = setup['training']['loss']['w_sxcorr']
+w_l2 = setup['training']['loss']['w_l2']
+
+w_sum = w_l1 + w_lm + w_sc + w_logmel + w_wsc + w_slm + w_xcorr + w_sxcorr + w_l2
+
+stftloss = MRSTFTLoss(sc_weight=w_sc, log_mag_weight=w_lm, wsc_weight=w_wsc, smooth_log_mag_weight=w_slm, sxcorr_weight=w_sxcorr).to(device)
+logmelloss = MRLogMelLoss().to(device)
+
+def xcorr_loss(y_true, y_pred):
+    dims = list(range(1, len(y_true.shape)))
+
+    loss = 1 - torch.sum(y_true * y_pred, dim=dims) / torch.sqrt(torch.sum(y_true ** 2, dim=dims) * torch.sum(y_pred ** 2, dim=dims) + 1e-9)
+
+    return torch.mean(loss)
+
+def td_l2_norm(y_true, y_pred):
+    dims = list(range(1, len(y_true.shape)))
+
+    loss = torch.mean((y_true - y_pred) ** 2, dim=dims) / (torch.mean(y_pred ** 2, dim=dims) ** .5 + 1e-6)
+
+    return loss.mean()
+
+def td_l1(y_true, y_pred, pow=0):
+    dims = list(range(1, len(y_true.shape)))
+    tmp = torch.mean(torch.abs(y_true - y_pred), dim=dims) / ((torch.mean(torch.abs(y_pred), dim=dims) + 1e-9) ** pow)
+
+    return torch.mean(tmp)
+
+def criterion(x, y):
+
+    return (w_l1 * td_l1(x, y, pow=1) +  stftloss(x, y) + w_logmel * logmelloss(x, y)
+            + w_xcorr * xcorr_loss(x, y) + w_l2 * td_l2_norm(x, y)) / w_sum
+
+
+
+# model checkpoint
+checkpoint = {
+    'setup'         : setup,
+    'state_dict'    : model.state_dict(),
+    'loss'          : -1
+}
+
+
+if not args.no_redirect:
+    print(f"re-directing output to {os.path.join(args.output, output_file)}")
+    sys.stdout = open(os.path.join(args.output, output_file), "w")
+
+print("summary:")
+
+print(f"{count_parameters(model.cpu()) / 1e6:5.3f} M parameters")
+if hasattr(model, 'flop_count'):
+    print(f"{model.flop_count(16000) / 1e6:5.3f} MFLOPS")
+
+if ref is not None:
+    pass
+
+best_loss = 1e9
+
+for ep in range(1, epochs + 1):
+    print(f"training epoch {ep}...")
+    new_loss = train_one_epoch(model, criterion, optimizer, dataloader, device, scheduler)
+
+
+    # save checkpoint
+    checkpoint['state_dict'] = model.state_dict()
+    checkpoint['loss']       = new_loss
+
+    if run_validation:
+        print("running validation...")
+        validation_loss = evaluate(model, criterion, validation_dataloader, device)
+        checkpoint['validation_loss'] = validation_loss
+
+        if validation_loss < best_loss:
+            torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_best.pth'))
+            best_loss = validation_loss
+
+    if inference_test:
+        print("running inference test...")
+        out = model.process(features, periods).cpu().numpy()
+        wavfile.write(os.path.join(inference_folder, f'{model_name}_epoch_{ep}.wav'), 16000, out)
+        if ref is not None:
+            mos = pesq.pesq(16000, ref, out, mode='wb')
+            print(f"MOS (PESQ): {mos}")
+
+
+    torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth'))
+    torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth'))
+
+
+    print()
+
+print('Done')
--- a/dnn/torch/osce/utils/complexity.py
+++ b/dnn/torch/osce/utils/complexity.py
@@ -1,31 +1,4 @@
-"""
-/* Copyright (c) 2023 Amazon
-   Written by Jan Buethe */
-/*
-   Redistribution and use in source and binary forms, with or without
-   modification, are permitted provided that the following conditions
-   are met:
 
-   - Redistributions of source code must retain the above copyright
-   notice, this list of conditions and the following disclaimer.
-
-   - Redistributions in binary form must reproduce the above copyright
-   notice, this list of conditions and the following disclaimer in the
-   documentation and/or other materials provided with the distribution.
-
-   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-"""
 
 def _conv1d_flop_count(layer, rate):
     return 2 * ((layer.in_channels + 1) * layer.out_channels * rate / layer.stride[0] ) * layer.kernel_size[0]
--- a/dnn/torch/osce/utils/endoscopy.py
+++ b/dnn/torch/osce/utils/endoscopy.py
@@ -1,32 +1,3 @@
-"""
-/* Copyright (c) 2023 Amazon
-   Written by Jan Buethe */
-/*
-   Redistribution and use in source and binary forms, with or without
-   modification, are permitted provided that the following conditions
-   are met:
-
-   - Redistributions of source code must retain the above copyright
-   notice, this list of conditions and the following disclaimer.
-
-   - Redistributions in binary form must reproduce the above copyright
-   notice, this list of conditions and the following disclaimer in the
-   documentation and/or other materials provided with the distribution.
-
-   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-"""
-
 """ module for inspecting models during inference """
 
 import os
--- /dev/null
+++ b/dnn/torch/osce/utils/layers/noise_shaper.py
@@ -1,0 +1,100 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+
+from utils.complexity import _conv1d_flop_count
+
+class NoiseShaper(nn.Module):
+
+    def __init__(self,
+                 feature_dim,
+                 frame_size=160
+    ):
+        """
+
+        Parameters:
+        -----------
+
+        feature_dim : int
+            dimension of input features
+
+        frame_size : int
+            frame size
+
+        """
+
+        super().__init__()
+
+        self.feature_dim    = feature_dim
+        self.frame_size     = frame_size
+
+        # feature transform
+        self.feature_alpha1 = nn.Conv1d(self.feature_dim, frame_size, 2)
+        self.feature_alpha2 = nn.Conv1d(frame_size, frame_size, 2)
+
+
+    def flop_count(self, rate):
+
+        frame_rate = rate / self.frame_size
+
+        shape_flops = sum([_conv1d_flop_count(x, frame_rate) for x in (self.feature_alpha1, self.feature_alpha2)]) + 11 * frame_rate * self.frame_size
+
+        return shape_flops
+
+
+    def forward(self, features):
+        """ creates temporally shaped noise
+
+
+        Parameters:
+        -----------
+        features : torch.tensor
+            frame-wise features of shape (batch_size, num_frames, feature_dim)
+
+        """
+
+        batch_size = features.size(0)
+        num_frames = features.size(1)
+        frame_size = self.frame_size
+        num_samples = num_frames * frame_size
+
+        # feature path
+        f = F.pad(features.permute(0, 2, 1), [1, 0])
+        alpha = F.leaky_relu(self.feature_alpha1(f), 0.2)
+        alpha = torch.exp(self.feature_alpha2(F.pad(alpha, [1, 0])))
+        alpha = alpha.permute(0, 2, 1)
+
+        # signal generation
+        y = torch.randn((batch_size, num_frames, frame_size), dtype=features.dtype, device=features.device)
+        y = alpha * y
+
+        return y.reshape(batch_size, 1, num_samples)
--- a/dnn/torch/osce/utils/layers/silk_upsampler.py
+++ b/dnn/torch/osce/utils/layers/silk_upsampler.py
@@ -1,3 +1,32 @@
+"""
+/* Copyright (c) 2023 Amazon
+   Written by Jan Buethe */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+"""
+
 """ This module implements the SILK upsampler from 16kHz to 24 or 48 kHz """
 
 import torch
--- a/dnn/torch/osce/utils/layers/td_shaper.py
+++ b/dnn/torch/osce/utils/layers/td_shaper.py
@@ -11,7 +11,8 @@
                  feature_dim,
                  frame_size=160,
                  avg_pool_k=4,
-                 innovate=False
+                 innovate=False,
+                 pool_after=False
     ):
         """
 
@@ -39,6 +40,7 @@
         self.frame_size     = frame_size
         self.avg_pool_k     = avg_pool_k
         self.innovate       = innovate
+        self.pool_after     = pool_after
 
         assert frame_size % avg_pool_k == 0
         self.env_dim = frame_size // avg_pool_k + 1
@@ -71,8 +73,12 @@
     def envelope_transform(self, x):
 
         x = torch.abs(x)
-        x = F.avg_pool1d(x, self.avg_pool_k, self.avg_pool_k)
-        x = torch.log(x + .5**16)
+        if self.pool_after:
+            x = torch.log(x + .5**16)
+            x = F.avg_pool1d(x, self.avg_pool_k, self.avg_pool_k)
+        else:
+            x = F.avg_pool1d(x, self.avg_pool_k, self.avg_pool_k)
+            x = torch.log(x + .5**16)
 
         x = x.reshape(x.size(0), -1, self.env_dim - 1)
         avg_x = torch.mean(x, -1, keepdim=True)
--- /dev/null
+++ b/dnn/torch/osce/utils/lpcnet_features.py
@@ -1,0 +1,112 @@
+import os
+
+import torch
+import numpy as np
+
+def load_lpcnet_features(feature_file, version=2):
+    if version == 2:
+        layout = {
+            'cepstrum': [0,18],
+            'periods': [18, 19],
+            'pitch_corr': [19, 20],
+            'lpc': [20, 36]
+            }
+        frame_length = 36
+
+    elif version == 1:
+        layout = {
+            'cepstrum': [0,18],
+            'periods': [36, 37],
+            'pitch_corr': [37, 38],
+            'lpc': [39, 55],
+            }
+        frame_length = 55
+    else:
+        raise ValueError(f'unknown feature version: {version}')
+
+
+    raw_features = torch.from_numpy(np.fromfile(feature_file, dtype='float32'))
+    raw_features = raw_features.reshape((-1, frame_length))
+
+    features = torch.cat(
+        [
+            raw_features[:, layout['cepstrum'][0]   : layout['cepstrum'][1]],
+            raw_features[:, layout['pitch_corr'][0] : layout['pitch_corr'][1]]
+        ],
+        dim=1
+    )
+
+    lpcs = raw_features[:, layout['lpc'][0]   : layout['lpc'][1]]
+    periods = (0.1 + 50 * raw_features[:, layout['periods'][0] : layout['periods'][1]] + 100).long()
+
+    return {'features' : features, 'periods' : periods, 'lpcs' : lpcs}
+
+
+
+def create_new_data(signal_path, reference_data_path, new_data_path, offset=320, preemph_factor=0.85):
+    ref_data = np.memmap(reference_data_path, dtype=np.int16)
+    signal = np.memmap(signal_path, dtype=np.int16)
+
+    signal_preemph_path = os.path.splitext(signal_path)[0] + '_preemph.raw'
+    signal_preemph = np.memmap(signal_preemph_path, dtype=np.int16, mode='write', shape=signal.shape)
+
+
+    assert len(signal) % 160 == 0
+    num_frames = len(signal) // 160
+    mem = np.zeros(1)
+    for fr in range(len(signal)//160):
+        signal_preemph[fr * 160 : (fr + 1) * 160] = np.convolve(np.concatenate((mem, signal[fr * 160 : (fr + 1) * 160])), [1, -preemph_factor], mode='valid')
+        mem = signal[(fr + 1) * 160 - 1 : (fr + 1) * 160]
+
+    new_data = np.memmap(new_data_path, dtype=np.int16, mode='write', shape=ref_data.shape)
+
+    new_data[:] = 0
+    N = len(signal) - offset
+    new_data[1 : 2*N + 1: 2] = signal_preemph[offset:]
+    new_data[2 : 2*N + 2: 2] = signal_preemph[offset:]
+
+
+def parse_warpq_scores(output_file):
+    """ extracts warpq scores from output file """
+
+    with open(output_file, "r") as f:
+        lines = f.readlines()
+
+    scores = [float(line.split("WARP-Q score:")[-1]) for line in lines if line.startswith("WARP-Q score:")]
+
+    return scores
+
+
+def parse_stats_file(file):
+
+    with open(file, "r") as f:
+        lines = f.readlines()
+
+    mean     = float(lines[0].split(":")[-1])
+    bt_mean  = float(lines[1].split(":")[-1])
+    top_mean = float(lines[2].split(":")[-1])
+
+    return mean, bt_mean, top_mean
+
+def collect_test_stats(test_folder):
+    """ collects statistics for all discovered metrics from test folder """
+
+    metrics = {'pesq', 'warpq', 'pitch_error', 'voicing_error'}
+
+    results = dict()
+
+    content = os.listdir(test_folder)
+
+    stats_files = [file for file in content if file.startswith('stats_')]
+
+    for file in stats_files:
+        metric = file[len("stats_") : -len(".txt")]
+
+        if metric not in metrics:
+            print(f"warning: unknown metric {metric}")
+
+        mean, bt_mean, top_mean = parse_stats_file(os.path.join(test_folder, file))
+
+        results[metric] = [mean, bt_mean, top_mean]
+
+    return results
--- a/dnn/torch/osce/utils/misc.py
+++ b/dnn/torch/osce/utils/misc.py
@@ -39,4 +39,27 @@
 
         total += count
 
-    return total
\ No newline at end of file
+    return total
+
+
+def retain_grads(module):
+    for p in module.parameters():
+        if p.requires_grad:
+            p.retain_grad()
+
+def get_grad_norm(module, p=2):
+    norm = 0
+    for param in module.parameters():
+        if param.requires_grad:
+            norm = norm + (torch.abs(param.grad) ** p).sum()
+
+    return norm ** (1/p)
+
+def create_weights(s_real, s_gen, alpha):
+    weights = []
+    with torch.no_grad():
+        for sr, sg in zip(s_real, s_gen):
+            weight = torch.exp(alpha * (sr[-1] - sg[-1]))
+            weights.append(weight)
+
+    return weights
\ No newline at end of file
--- a/dnn/torch/osce/utils/silk_features.py
+++ b/dnn/torch/osce/utils/silk_features.py
@@ -27,7 +27,6 @@
 */
 """
 
-
 import os
 
 import numpy as np
--- a/dnn/torch/osce/utils/spec.py
+++ b/dnn/torch/osce/utils/spec.py
@@ -30,6 +30,7 @@
 import math as m
 import numpy as np
 import scipy
+import torch
 
 def erb(f):
     return 24.7 * (4.37 * f + 1)
@@ -48,6 +49,20 @@
     'bark': [bark, inv_bark],
     'erb': [erb, inv_erb]
 }
+
+def gen_filterbank(N, Fs=16000, keep_size=False):
+    in_freq = (np.arange(N+1, dtype='float32')/N*Fs/2)[None,:]
+    M = N + 1 if keep_size else N
+    out_freq = (np.arange(M, dtype='float32')/N*Fs/2)[:,None]
+    #ERB from B.C.J Moore, An Introduction to the Psychology of Hearing, 5th Ed., page 73.
+    ERB_N = 24.7 + .108*in_freq
+    delta = np.abs(in_freq-out_freq)/ERB_N
+    center = (delta<.5).astype('float32')
+    R = -12*center*delta**2 + (1-center)*(3-12*delta)
+    RE = 10.**(R/10.)
+    norm = np.sum(RE, axis=1)
+    RE = RE/norm[:, np.newaxis]
+    return torch.from_numpy(RE)
 
 def create_filter_bank(num_bands, n_fft=320, fs=16000, scale='bark', round_center_bins=False, return_upper=False, normalize=False):
 
--- a/dnn/torch/osce/utils/templates.py
+++ b/dnn/torch/osce/utils/templates.py
@@ -140,8 +140,196 @@
     }
 }
 
+nolace_setup_adv = {
+    'dataset': '/local/datasets/silk_enhancement_v2_full_6to64kbps/training',
+    'model': {
+        'name': 'nolace',
+        'args': [],
+        'kwargs': {
+            'avg_pool_k': 4,
+            'comb_gain_limit_db': 10,
+            'cond_dim': 256,
+            'conv_gain_limits_db': [-12, 12],
+            'global_gain_limits_db': [-6, 6],
+            'hidden_feature_dim': 96,
+            'kernel_size': 15,
+            'num_features': 93,
+            'numbits_embedding_dim': 8,
+            'numbits_range': [50, 650],
+            'partial_lookahead': True,
+            'pitch_embedding_dim': 64,
+            'pitch_max': 300,
+            'preemph': 0.85,
+            'skip': 91
+        }
+    },
+    'data': {
+        'frames_per_sample': 100,
+        'no_pitch_value': 7,
+        'preemph': 0.85,
+        'skip': 91,
+        'pitch_hangover': 8,
+        'acorr_radius': 2,
+        'num_bands_clean_spec': 64,
+        'num_bands_noisy_spec': 18,
+        'noisy_spec_scale': 'opus',
+        'pitch_hangover': 8,
+    },
+    'discriminator': {
+        'args': [],
+        'kwargs': {
+            'architecture': 'free',
+            'design': 'f_down',
+            'fft_sizes_16k': [
+                64,
+                128,
+                256,
+                512,
+                1024,
+                2048,
+            ],
+            'freq_roi': [0, 7400],
+            'fs': 16000,
+            'max_channels': 256,
+            'noise_gain': 0.0,
+        },
+        'name': 'fdmresdisc',
+    },
+    'training': {
+        'adv_target': 'target_orig',
+        'batch_size': 64,
+        'epochs': 50,
+        'gen_lr_reduction': 1,
+        'lambda_feat': 1.0,
+        'lambda_reg': 0.6,
+        'loss': {
+            'w_l1': 0,
+            'w_l2': 10,
+            'w_lm': 0,
+            'w_logmel': 0,
+            'w_sc': 0,
+            'w_slm': 20,
+            'w_sxcorr': 1,
+            'w_wsc': 0,
+            'w_xcorr': 0,
+        },
+        'lr': 0.0001,
+        'lr_decay_factor': 2.5e-09,
+    }
+}
 
+
+lavoce_setup = {
+    'data': {
+        'frames_per_sample': 100,
+        'target': 'signal'
+    },
+    'dataset': '/local/datasets/lpcnet_large/training',
+    'model': {
+        'args': [],
+        'kwargs': {
+            'comb_gain_limit_db': 10,
+            'cond_dim': 256,
+            'conv_gain_limits_db': [-12, 12],
+            'global_gain_limits_db': [-6, 6],
+            'kernel_size': 15,
+            'num_features': 19,
+            'pitch_embedding_dim': 64,
+            'pitch_max': 300,
+            'preemph': 0.85,
+            'pulses': True
+            },
+        'name': 'lavoce'
+    },
+    'training': {
+        'batch_size': 256,
+        'epochs': 50,
+        'loss': {
+            'w_l1': 0,
+            'w_l2': 0,
+            'w_lm': 0,
+            'w_logmel': 0,
+            'w_sc': 0,
+            'w_slm': 2,
+            'w_sxcorr': 1,
+            'w_wsc': 0,
+            'w_xcorr': 0
+        },
+        'lr': 0.0005,
+        'lr_decay_factor': 2.5e-05
+    },
+    'validation_dataset': '/local/datasets/lpcnet_large/validation'
+}
+
+lavoce_setup_adv = {
+    'data': {
+        'frames_per_sample': 100,
+        'target': 'signal'
+    },
+    'dataset': '/local/datasets/lpcnet_large/training',
+    'discriminator': {
+        'args': [],
+        'kwargs': {
+            'architecture': 'free',
+            'design': 'f_down',
+            'fft_sizes_16k': [
+                64,
+                128,
+                256,
+                512,
+                1024,
+                2048,
+            ],
+            'freq_roi': [0, 7400],
+            'fs': 16000,
+            'max_channels': 256,
+            'noise_gain': 0.0,
+        },
+        'name': 'fdmresdisc',
+    },
+    'model': {
+        'args': [],
+        'kwargs': {
+            'comb_gain_limit_db': 10,
+            'cond_dim': 256,
+            'conv_gain_limits_db': [-12, 12],
+            'global_gain_limits_db': [-6, 6],
+            'kernel_size': 15,
+            'num_features': 19,
+            'pitch_embedding_dim': 64,
+            'pitch_max': 300,
+            'preemph': 0.85,
+            'pulses': True
+            },
+        'name': 'lavoce'
+    },
+    'training': {
+        'batch_size': 64,
+        'epochs': 50,
+        'gen_lr_reduction': 1,
+        'lambda_feat': 1.0,
+        'lambda_reg': 0.6,
+        'loss': {
+            'w_l1': 0,
+            'w_l2': 0,
+            'w_lm': 0,
+            'w_logmel': 0,
+            'w_sc': 0,
+            'w_slm': 2,
+            'w_sxcorr': 1,
+            'w_wsc': 0,
+            'w_xcorr': 0
+        },
+        'lr': 0.0001,
+        'lr_decay_factor': 2.5e-09
+    },
+}
+
+
 setup_dict = {
     'lace': lace_setup,
-    'nolace': nolace_setup
+    'nolace': nolace_setup,
+    'nolace_adv': nolace_setup_adv,
+    'lavoce': lavoce_setup,
+    'lavoce_adv': lavoce_setup_adv
 }
--