ref: 242198ea66a7f1939c7073a57f4931a5f102d4ce
parent: 590e9ce41d2ea3af73d019367d7c06ea9ca8fc68
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Tue Dec 11 11:29:31 EST 2018
Get rid of the TRAINING macro
--- a/dnn/compile.sh
+++ b/dnn/compile.sh
@@ -1,4 +1,4 @@
#!/bin/sh
-gcc -DTRAINING=1 -Wall -W -O3 -g -I../include dump_data.c freq.c kiss_fft.c pitch.c celt_lpc.c -o dump_data -lm
+gcc -Wall -W -O3 -g -I../include dump_data.c freq.c kiss_fft.c pitch.c celt_lpc.c -o dump_data -lm
gcc -o test_lpcnet -mavx2 -mfma -g -O3 -Wall -W -Wextra lpcnet.c nnet.c nnet_data.c freq.c kiss_fft.c pitch.c celt_lpc.c -lm
--- a/dnn/dump_data.c
+++ b/dnn/dump_data.c
@@ -46,8 +46,6 @@
#define PITCH_FRAME_SIZE 320
#define PITCH_BUF_SIZE (PITCH_MAX_PERIOD+PITCH_FRAME_SIZE)
-
-
#define CEPS_MEM 8
#define NB_DELTA_CEPS 6
@@ -54,14 +52,6 @@
#define NB_FEATURES (2*NB_BANDS+3+LPC_ORDER)
-#ifndef TRAINING
-#define TRAINING 0
-#endif
-
-
-
-
-
struct DenoiseState {
float analysis_mem[FRAME_SIZE];
float cepstral_mem[CEPS_MEM][NB_BANDS];
@@ -115,14 +105,12 @@
RNN_COPY(x0, x, WINDOW_SIZE);
apply_window(x);
forward_transform(X, x);
-#if TRAINING
for (i=lowpass;i<FREQ_SIZE;i++)
X[i].r = X[i].i = 0;
-#endif
compute_band_energy(Ex, X);
}
-static int compute_frame_features(DenoiseState *st, kiss_fft_cpx *X, kiss_fft_cpx *P,
+static void compute_frame_features(DenoiseState *st, kiss_fft_cpx *X, kiss_fft_cpx *P,
float *Ex, float *Ep, float *Exp, float *features, const float *in) {
int i;
float E = 0;
@@ -182,7 +170,6 @@
for (i=0;i<NB_FEATURES;i++) printf("%f ", features[i]);
printf("\n");
#endif
- return TRAINING && E < 0.1;
}
static void biquad(float *y, float mem[2], const float *x, const float *b, const float *a, int N) {
--
⑨