ref: 0b018637325bca70b5f3a727dd1b1e83f87c2829
parent: 524f84800f3eb63a4eec41f173d229b00761f270
author: Jean-Marc Valin <jmvalin@amazon.com>
date: Fri Sep 30 18:21:30 EDT 2022
Larger range of quantizers
--- a/dnn/training_tf2/decode_rdovae.py
+++ b/dnn/training_tf2/decode_rdovae.py
@@ -83,7 +83,7 @@
print(bits.shape)
lambda_val = 0.0007 * np.ones((nb_sequences, sequence_size//2, 1))
-quant_id = np.round(10*np.log(lambda_val/.0007)).astype('int16')
+quant_id = np.round(10*np.log(lambda_val/.0002)).astype('int16')
quant_id = quant_id[:,:,0]
quant_embed = qembedding(quant_id)
quant_scale = tf.math.softplus(quant_embed[:,:,:nbits])
@@ -98,8 +98,8 @@
state = np.reshape(state, (nb_sequences, sequence_size//2, 24))
state = state[:,-1,:]
-#state = pvq_quantize(state, 30)
-state = state/(1e-15+tf.norm(state, axis=-1,keepdims=True))
+state = pvq_quantize(state, 30)
+#state = state/(1e-15+tf.norm(state, axis=-1,keepdims=True))
print("shapes are:")
print(bits.shape)
--- a/dnn/training_tf2/encode_rdovae.py
+++ b/dnn/training_tf2/encode_rdovae.py
@@ -104,8 +104,8 @@
nbits=80
bits.astype('float32').tofile(args.output + "-syms.f32")
-lambda_val = 0.0007 * np.ones((nb_sequences, sequence_size//2, 1))
-quant_id = np.round(10*np.log(lambda_val/.0007)).astype('int16')
+lambda_val = 0.001 * np.ones((nb_sequences, sequence_size//2, 1))
+quant_id = np.round(10*np.log(lambda_val/.0002)).astype('int16')
quant_id = quant_id[:,:,0]
quant_embed = qembedding(quant_id)
quant_scale = tf.math.softplus(quant_embed[:,:,:nbits])
@@ -122,4 +122,4 @@
print(dec_out.shape)
-dec_out.numpy().astype('float32').tofile(args.output + "-unquant_out.f32")
+dec_out.numpy().astype('float32').tofile(args.output + "-quant_out.f32")
--- a/dnn/training_tf2/train_rdovae.py
+++ b/dnn/training_tf2/train_rdovae.py
@@ -121,10 +121,11 @@
print(features.shape)
features = features[:, :, :nb_used_features]
-#lambda_val = np.random.uniform(.0007, .002, (features.shape[0], features.shape[1], 1))
-lambda_val = np.repeat(np.random.uniform(.0007, .002, (features.shape[0], 1, 1)), features.shape[1]//2, axis=1)
-#lambda_val = 0*lambda_val + .001
-quant_id = np.round(10*np.log(lambda_val/.0007)).astype('int16')
+#lambda_val = np.repeat(np.random.uniform(.0007, .002, (features.shape[0], 1, 1)), features.shape[1]//2, axis=1)
+#quant_id = np.round(10*np.log(lambda_val/.0007)).astype('int16')
+#quant_id = quant_id[:,:,0]
+quant_id = np.repeat(np.random.randint(39, size=(features.shape[0], 1, 1), dtype='int16'), features.shape[1]//2, axis=1)
+lambda_val = .0002*np.exp(quant_id/10.)
quant_id = quant_id[:,:,0]
# dump models to disk as we go
--
⑨