ref: 054d984bf372c9c9f63fad2eb2e3751a25cac0a9
parent: 8cdc8081d8410d7ea8400c5a1fac8f98e58b4d90
author: Jean-Marc Valin <jmvalin@amazon.com>
date: Sat Oct 16 13:20:24 EDT 2021
Freeze LPCs when quantizing e2e models
--- a/dnn/training_tf2/lpcnet.py
+++ b/dnn/training_tf2/lpcnet.py
@@ -249,6 +249,12 @@
fdense1 = Dense(128, activation='tanh', name='feature_dense1')
fdense2 = Dense(128, activation='tanh', name='feature_dense2')
+ if flag_e2e and quantize:
+ fconv1.trainable = False
+ fconv2.trainable = False
+ fdense1.trainable = False
+ fdense2.trainable = False
+
cfeat = fdense2(fdense1(cfeat))
if not flag_e2e:
--
⑨